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FSA Research and Evidence 

Honey is a valuable and nutritious food product, and its popularity is 

increasing globally driven by consumers demand for a healthier and more 

sustainable diet. However, honey is at risk of fraudulent practices such as 

the addition of exogenous sugars in the form of cheaper plant-based 

syrups including corn, rice, and sugar beet syrup. Honey authentication is 

of the utmost importance, but existing methods are not sufficient to 

detect all types of sugar syrups used for adulteration and at present there 

is no single method for honey authenticity testing. 

The aim of this project was to investigate a) the suitability of Spatially 

offset Raman Spectroscopy (SORS), a non-invasive technique used to 

acquire measurements through packaging, for detecting the type and 

percentage of exogenous sugar adulteration in honey and b) to develop 

DNA markers (DNA barcoding) to identify the presence of DNA from plant 

sources such as rice and sugar beet which are used for making sugar 

syrups used for honey adulteration. 

1. Lay Summary 1. Lay Summary 
Honey is a valuable and nutritious food product, and its popularity is 
increasing globally driven by consumers demand for a healthier and more 
sustainable diet. However, honey is at risk of fraudulent practices such 
as the addition of exogenous sugars in the form of cheaper plant-based 
syrups including corn, rice, and sugar beet syrup. Honey authentication is 
of the utmost importance, but existing methods are not sufficient to detect 
all types of sugar syrups used for adulteration and at present there is no 
single method for honey authenticity testing. 

The aim of this project was to investigate a) the suitability of Spatially offset 
Raman Spectroscopy (SORS), a non-invasive technique used to acquire 
measurements through packaging, for detecting the type and percentage 
of exogenous sugar adulteration in honey and b) to develop DNA markers 
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(DNA barcoding) to identify the presence of DNA from plant sources such 
as rice and sugar beet which are used for making sugar syrups used for 
honey adulteration. 

For the purposes of this study, we collected 17 different types of pure 
honey from the UK and different levels of adulteration were simulated with 
a range of different plant syrups. 

For the DNA barcoding method, we designed specific DNA markers for 
detecting the presence of sugar syrups. The results showed that 
adulterated honey was clearly separated from natural honey, even at 1% 
adulteration level. Moreover, the test was successful for multiple syrup 
types and was effective on honeys of different compositions. 

For the SORS method, we collected spectra from the pure and adulterated 
honey samples (using rice and sugar beet syrup) and constructed 
predictive models using different machine learning algorithms (a form of 
artificial Intelligence), to identify adulterated samples and predict the level 
and type of adulteration. 

The results of this study demonstrate the potential of SORS and DNA 
barcoding methods to be applied for the authentication of UK honey 
samples and adulteration detection. The combination of the above 
techniques could result in a highly accurate and fast method for honey 
quality control deployable in field. This will support the local beekeeping 
sector and provide importers and policymakers with an important tool 
for tackling fraud in the honey industry. Furthermore, it could alleviate 
consumer concerns around the purity and authenticity of honey products 
on the market. 

2. Executive Summary 2. Executive Summary 
Honey is a valuable and nutritious food product, and its popularity is 
increasing globally driven by consumers demand for a healthier and more 
sustainable diet. The global honey market is currently worth over USD 
8.45 billion which puts honey at risk of fraudulent practices such as the 
addition of exogenous sugars in the form of cheaper plant-based syrups 
including rice and sugar beet syrup. Honey authentication is of the utmost 
importance, but current methods are faced with challenges due to the 
large variation in natural honey composition, or the incapability to detect 
certain types of plant syrups to confirm the adulterant used. Molecular 
methods such as DNA barcoding have shown great promise in identifying 
plant DNA sources in honey and could be applied to detect plant-based 
sugars used as adulterants. Furthermore, spectroscopic techniques such 
as Raman Spectroscopy coupled with machine learning algorithms have 
shown potential for characterising the metabolic fingerprint of honey and 
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identifying adulteration. Among them Spatially offset Raman Spectroscopy 
(SORS) is a truly non-invasive technique employable in field and through 
container. 

The aim of this project was to investigate a) the suitability of SORS and 
machine learning methods to develop a fast, accurate, and cost-effective 
method for detecting the type and percentage of exogenous sugar 
adulteration in honey and b) to develop a new DNA barcoding method for 
honey adulteration detection using qPCR with the aim to discover specific 
DNA markers for common adulterants such as rice and sugar beet syrup. 

For the purposes of this study, we collected 17 different types of pure 
honey from the UK and different levels of adulteration were simulated 
(1-30% for the qPCR method and 10-50% for the SORS method) with a 
range of different plant syrups. 

For the qPCR method we designed a series of specific DNA markers for 
detecting the presence of sugar syrups. The results showed that 
adulterated honey was clearly separated from natural honey, even at 1% 
adulteration level. Moreover, the test was successful for multiple syrup 
types and was effective on honeys of different compositions. 

For the SORS method, we collected spectra from the pure and adulterated 
honey samples (using rice and sugar beet syrup) and constructed 
classification and regression models with different machine learning 
algorithms, to identify adulterated samples and predict the level of 
adulteration as well as the type of adulterant sugar syrup. Random Forest 
(RF) was consistently the best performing algorithm for both tasks. The 
RF classification model clearly identified the type of adulterant used and 
also successfully distinguished between pure and adulterated honey with 
only 1.1% of the pure honey samples misclassified as adulterated and 
3.64% of adulterated samples misclassified as pure honey. Furthermore, 
RF regression models were also highly efficient at correctly predicting the 
percentage of adulteration with rice and sugar beet syrup. 

The results of this study demonstrate the potential of SORS and DNA 
barcoding methods to be applied for the authentication of UK honey 
samples and adulteration detection. The two methods could be used 
complementary with SORS applied as a rapid non-invasive screening 
method throughout the honey supply chain, while DNA barcoding could be 
used as a sensitive and robust method to confirm syrup species origin. 

The results of these projects have been published open access and can be 
accessed as follows: 
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Shehata, M., Dodd, S., Mosca, S., Matousek, P., Parmar, B., Kevei, Z., & 
Anastasiadi, M. (2024). Application of Spatial Offset Raman Spectroscopy 
(SORS) and Machine Learning for Sugar Syrup Adulteration Detection in UK 
Honey. Foods, 13(15), Article 15. https://doi.org/10.3390/foods13152425 
[Under a Creative Commons license] 
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Anastasiadi, M. (2025). Detection of sugar syrup adulteration in UK honey 
using DNA barcoding. Food Control, 167, 110772. https://doi.org/10.1016/
j.foodcont.2024.110772 [Under a Creative Commons license] 

These published research articles encompass a wider scope, so some 
sections of the publications have been omitted in this report as follows: 
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3. Introduction 3. Introduction 
Honey is a sweet substance produced naturally by honeybees and is a 
popular food product consumed globally for its taste, nutritional value 
and perceived health benefits (Soares, Pinto, et al., 2017). UK domestic 
production is far from self-sufficient, and recently the UK was listed as 
one of the top four countries worldwide importing honey (García, 2018), 
and the second-largest importer in Europe with 51,912 tonnes of honey 
imported in 2022 valued at €122 million (CBI, 2024). However, total honey 
imports in Europe are expected to show little growth or even a negative 
trend in the coming years mainly because of consumer concerns around 
the purity and authenticity of honey from various cheap suppliers (CBI, 
2024). These concerns were further exacerbated by the recent European 
Commission’s Joint Research Centre (JRC) report published in 2023 which 
identified that 46% of the 147 samples tested were suspicious to be 
adulterated (Ždiniaková et al., 2023). However, the current analytical 
methods are not yet developed enough to provide definitive answers to 
the question of adulteration, therefore follow-up investigations of 
suspicious samples are essential, including collection of traceability 
information. 

Recently, a review was commissioned by the UK government where the 
need for research into new standard analytical tests for honey 
authentication was highlighted, partly due to the high-level interpretation 

• Methodology, results and discussion relating to DNA 
markers for corn and corn syrup. 

• Methodology, results and discussion relating to cane syrup 
adulteration in heather honey. 
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needed in existing approaches (Walker et al., 2022a, 2022b). The same 
report identified some of the possible malpractices associated with honey 
including direct adulteration with sugar syrups and mislabelling of origin. 

Honey is mainly composed of sugars (mostly fructose, glucose, maltose 
and sucrose, amongst others) and water. Sugar adulteration of honey 
involves diluting pure honey with cheaper sugar syrups, which not only 
results in inferior taste but the nutritional properties and chemical 
composition is also altered (Geana & Ciucure, 2020). Traditional 
methodology for sugar adulteration detection in honey relies on assessing 
the sugar composition using methods such as high-performance liquid 
chromatography (HPLC). The honey legislation for England (Honey 
(England) Regulations, 2015) and the Codex Standard 12–1981 for honey 
(Codex Alimentarius, 2022) legislate the minimum quantity of fructose and 
glucose (no less than 60 g/100g) and maximum levels of sucrose (no more 
than 5 g/100g) in honey, with deviations allowed for certain honey types 
such as honeydew, lavender, borage and Citrus spp. amongst others due 
to the natural differences in sugar composition in these nectar sources. 
However, as some sugar syrups contain a similar sugar composition to 
the nectar that bees forage on, more advanced techniques are needed to 
detect sugar adulteration in honey. 

Most of the modern present methodology for exogenous sugar detection 
in honey are based on stable carbon isotope ratio analysis (SCIRA), which 
relies on identifying the presence of adulterant C4 plants by assessing 
the 13C/12C ratio (White, 1992). This is based on the information that 
honey should be almost entirely derived from plants which use the C3 
(Calvin cycle) photosynthetic pathway, whereas plants like corn and sugar 
cane possess the C4 (Hatch-Slack) pathway (Tosun, 2013). C4 plants have 
a higher 13C value which becomes apparent if honeys are adulterated 
with an abundance of corn or cane syrup (Tosun, 2013). However, for 
syrups derived from C3 plants such as rice and sugar beet, SCIRA is not 
suitable, so alternative methods are required. Additionally, the 2023 EU JRC 
technical report indicated that SCIRA methods (AOAC method 991.41) were 
not effective in detecting honeys suspicious of non-compliance, suggesting 
that sugar syrups from corn or sugar cane are no longer being used to 
adulterate honey for the European consumption (Ždiniaková et al., 2023). 
An additional issue with this method is the presence of false positives 
and differences between testing labs reported by beekeepers (Kilpinen & 
Vejsnæs, 2021), which ultimately means samples require additional and 
more costly analysis to prove authenticity, hence it is evident that more 
robust and repeatable standard tests are needed. 

Recently spectroscopic methods including infrared (IR), Raman, 
fluorescence spectroscopy and nuclear magnetic resonance (NMR) 
spectroscopy have been proposed as alternative methods for rapid 
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determination of sugar adulteration of honey. These methods rely on 
mapping the spectral fingerprint of pure and adulterated honeys and apply 
multivariate data analysis techniques to build predictive classification and 
regression models able to identify adulterated samples. Notably 1H-NMR 
was one of the methods employed during honey testing in the recent 
2023 EU JRC technical report. Raman spectroscopy has also been used 
as a rapid, non-destructive method to detect sugar adulterants in honey, 
such as fructose, glucose, malt must, etc (Oroian et al., 2018). Furthermore, 
Spatially Offset Raman Spectroscopy (SORS) is a truly non-invasive 
technique which has already shown promising results for honey 
authentication in our previous STFC Food Network+ scoping project [2019]. 
The technique has previously been applied for the detection of counterfeit 
alcohol (Ellis et al., 2017) and butter adulteration (Lohumi et al., 2018) 
through packaging and has been commercialised and deployed in over 75 
airports worldwide to detect liquid explosives in unopened bottles. 

Despite their potential spectroscopic methods are likely to be affected 
by the large variation in the characteristics of natural honey, causing 
unreliable or misinterpreted results (Soares, Amaral, et al., 2017). 
Therefore, their success relies greatly on the existence of extensive and 
representative databases and employing robust data analysis techniques 
to build predictive models able to incorporate the natural variability in 
honey. 

Another emerging technique for honey authenticity is DNA based methods 
which have been widely used in food authentication, to identify the 
presence of plant species in various food products or raw ingredients 
(Madesis et al., 2014). Honey contains multiple sources of nucleic acids 
including plant DNA from floral forage, microbial DNA, and animal DNA 
derived from the honeybees (Wirta et al., 2021). Although DNA based 
methodology has predominantly focused on the botanical authentication 
of honey (Laube et al., 2010; Lopes et al., 2023; McDonald et al., 2018; 
Soares et al., 2018; Wu et al., 2017), it has also been shown that residual 
plant DNA from sugar syrup addition can be successfully identified in 
certain honey samples mixed with rice and corn molasses (Sobrino-
Gregorio et al., 2019; Truong et al., 2022). Nevertheless, this technique 
has not yet been tested on a wider range of syrups and honey types or 
developed for other common sugar syrup adulterants. This is the vital next 
step to assess the reliability of the method in potential real-life situations, 
where different syrups could be used on any type of honey. 

This project aimed to provide a robust methodology for plant-based syrup 
adulteration detection in honey through a combination of two orthogonal 
methods; a) SORS coupled with machine learning as a rapid non-invasive 
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screening technique and b) the application of DNA barcoding to build a 
robust method for sugar adulteration detection in honey, focusing on rice 
and sugar beet syrup detection. 

4. Material and methods 4. Material and methods 

4.1. Sample collection and preparation 4.1. Sample collection and preparation 

4.1.1. Figures, charts and graphs 4.1.1. Figures, charts and graphs 
A total of 17 honey samples were collected from bee farmers around the 
UK, representative of different seasons and floral sources. Additionally, 4 
honey samples of UK origin were purchased commercially (CH1 – CH4) 
from supermarkets and online retailers. Table 1 includes the types of 
honey, and the type of flora predominantly available to bees in the area 
surrounding the apiaries. When a single flora type has been named for a 
type of honey, this is not necessary an indication the honey is monofloral 
and it is information obtained from the beekeepers. Samples were stored 
at room temperature and away from light. 

Table 1. Honey sample information 

SampleSample  # # HoneyHoney  description description Bee forage* Bee forage* Season Season 

H01 H01 woodland Woodland trees and nearby flowers, including 
lime (Tilia), horse chestnut (Aesculus 
hippocastanum) and sweet chestnut (Castanea 
sativa). 

Summer 

H02 H02 sycamore Predominantly Acer pseudoplatanus with a bit of 
hawthorn (Crataegus monogyna) and bean 
(Fabaceae) 

Spring 

H03 H03 phacelia Phacelia tanacetifolia Spring 

H04 H04 ivy Hedera helix Autumn 

H05 H05 himalyan balsam Impatiens glandulifera Autumn 

H06 H06 spring set Mixture of farmed and wild spring flowers Spring 

H07 H07 borage Borago officinalis Summer 

H08 H08 buckwheat Fagopyrum esculentum Autumn 

H09 H09 meadowfoam Limnanthes alba Summer 

H10 H10 sea lavender Limonium vulgare Summer 

H11 H11 heather Calluna vulgaris Autumn 

H12 H12 echium Echium plantagineum Summer 

H13 H13 field and forest Blend of moor, woodland and wild pasture 
flowers. 

Mixed 

H14 H14 hedgerow Mixture of flowers from hedgerows, meadows, 
and farmland. 

Mixed 

H15 H15 english blossom Blend of blossoms from spring and summer Mixed 

H16 H16 apple blossom Malus domestica Spring 

H17 H17 wildflower Mixture of summer wildflowers Summer 

CH1 CH1 wildflower Mixture of summer wildflowers and bramble Summer 

CH2 CH2 heather Heather from Scottish hills and countryside Autumn 
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SampleSample  # # HoneyHoney  description description Bee forage* Bee forage* Season Season 

CH3 CH3 heather Heather from Scottish moors Autumn 

CH4 CH4 borage Borago officinalis Spring 

*As described by honey producer or interpreted from honey label. 

4.1.2. Syrup samples 4.1.2. Syrup samples 
Sugar syrups derived from rice or sugar beet were purchased from online 
retailers or grocery stores, two of the syrups (S1, S2) did not state the plant 
origin so were treated as unknown samples (Table 2). Control samples 
were included consisting of rice syrup (R5) prepared in house as described 
in section 5.1.3, granulated sugar (B3), and syrup prepared from B3 with 
water (50/50 w/v) (B4). These samples were also stored at room 
temperature and away from light. 

Table 2. Syrup sample information 

Sample # Sample # Description Description Plant species Plant species Production Country Production Country 

R1 R1 rice syrup rice Spain 

R2 R2 rice syrup rice Spain 

R3 R3 rice syrup rice Korea 

R4 R4 rice syrup rice Korea 

R5 R5 rice syrup rice NK* 

R6 R6 rice syrup rice Germany 

R7 R7 rice syrup rice Non-EU 

R8 R8 rice syrup rice EU/non-EU 

S1 S1 sugar syrup NK* Korea 

S2 S2 sugar syrup NK* Korea 

B1 B1 sugar beet molasses sugar beet Germany 

B2 B2 bee feed syrup sugar beet Germany 

B3 B3 granulated sugar sugar beet UK 

B4 B4 sugar syrup sugar beet UK 

B5 B5 light syrup sugar beet Sweden 

B6 B6 golden syrup sugar beet UK 

B7 B7 dark syrup sugar beet and cane Sweden 

* NK = Not Known 

A subsample of each of the 17 honey samples was spiked with sugar syrup 
at 1%, 5%, 10% and 30% (w/w) prior to DNA extraction. 

4.1.3. Rice syrup preparation 4.1.3. Rice syrup preparation 
To prepare sample R5, 450g of long grain brown rice (Sainsbury’s, UK) was 
washed and steamed in a rice cooker (Breville ITP181 1.8L, UK). 1L of water 
was added with 150g of barley malt powder (Wang Korea, South Korea), 
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mixed and left to ferment for 6 hours at 60°C. The mixture was strained 
using a muslin cloth and the liquid collected was boiled for 30 minutes to 
produce the syrup. 

4.1.4. Plant material 4.1.4. Plant material 
Rice grains (Oryza sativa X265), sugar beet seeds (Beta vulgaris var. 
Altissima) and corn kernels (Zea mays NK Falkone) were sterilised in 5% 
sodium hypochlorite: water (v/v) (Merck, Germany) and washed with 
ddH2O before leaving to germinate. Fresh leaf material was then taken 
from young plantlets for DNA extraction. 

4.1.5. Chemicals 4.1.5. Chemicals 
Methanol (LC-MS grade) and acetonitrile ( ≥ 99.9%) were obtained from 
Fisher Scientific, UK. D-(-)-Fructose (> 99%), D-(+)-Glucose (> 99.5%), 
Sucrose (≥ 99.5%) and Maltose (> 95%) from sourced from Sigma Aldrich, 
UK. 

4.2. DNA extraction 4.2. DNA extraction 

4.2.1. DNA extraction from plant material 4.2.1. DNA extraction from plant material 
Plant material was snap-frozen in liquid nitrogen and ground with a 3 
mm tungsten carbide (TC, Qiagen, Germany) bead using the Star-Beater 
(VWR, UK) at 30 mHz for 2 minutes. The E.Z.N.A Plant DNA kit (Omega Bio-
Tek, USA) was then used for the extraction following the manufacturer’s 
protocol. The eluted samples were stored at -20 °C, and diluted 10X in 
ultrapure water before testing. 

4.2.2. DNA extraction from honey/syrup 4.2.2. DNA extraction from honey/syrup 
10 g pure honey, syrup, or spiked honey was diluted to 50 mL ultrapure 
water and incubated at 65 °C for 30 minutes until completely dissolved. 
After centrifugation at 4500 x g for 15 minutes the pellet was processed 
with two different extraction kit methods. 

For the Nucleospin Food kit (Macherery-Nagal, Germany), the pellet was 
suspended in 200 µL ultrapure water, and ground with a 3 mm TC bead 
in the Star-Beater (VWR, UK) at 25 mHz for 2 minutes. After the addition 
of 400 µL of CF lysis buffer and 10 µL of proteinase K (20 mg/mL, QIAGEN, 
Germany) the samples were incubated for 30 minutes at 65 °C, before 
adding 10µL of RNase A (10 mg/mL, ThermoFisher Scientific, UK). After this 
the manufacturer’s protocol was followed for the DNA extraction. 
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For the DNeasy Plant Pro kit (QIAGEN, Germany), the pellet was suspended 
in 500 µL CD1 buffer and ground with a 3 mm TC bead in the Star-Beater 
(VWR, UK) at 25 mHz for 2 minutes. The samples were incubated at 65 °C 
for 30 minutes after the addition of 10 µL proteinase K (20 mg/mL, QIAGEN, 
Germany). After this the manufacturer’s protocol was followed. 

The DNA was eluted in 50 µL elution buffer with both methods, passed 
twice through the respective kit column and stored at -20 °C. 

4.3. DNA markers 4.3. DNA markers 
Investigated DNA sequences were obtained from the GenBank database 
(Benson et al., 2005), and candidate gene regions were identified for rice 
(Oryza sativa) and sugar beet (Beta vulgaris subsp. vulgaris). Primers were 
designed to be species specific and tested firstly in silico by using Primer-
BLAST (Ye et al., 2012), and then by using PCR (Section 5.4.1) to check for 
amplification or cross amplification in the rice, corn and sugar beet plant 
extracts. All primer sequences were developed during this study except 
where the reference is provided (Table 3). The conserved plant marker 
targeting the trnL P6 loop was used as a general positive control (Taberlet 
et al., 2007). 

Table 3. Primer information 

Target Target 
species species 

Target gene Target gene Name Name Primer Sequences 5'-3' (F; R*) Primer Sequences 5'-3' (F; R*) Amplicon Amplicon 
length length 

(bp) (bp) 

plant tRNA-Leu (trnL) P6 
loop (Taberlet et 
al., 2007) 

trnL_P6 GGGCAATCCTGAGCCAA; 
CCATTGAGTCTCTGCACCTATC 

10-144 

rice phospholipase D1 
(PLD1) (JRC, 2006) 

rice_PLD1 TGGTGAGCGTTTTGCAGTCT; 
CTGATCCACTAGCAGGAGGTCC 

68 

rice cytosine 
methyltransferase 
(Zmet3) 

rice_Zmet3 CCCGGCCCTAAGGAACATAG; 
CAGCAACCAAAGCACCTGAC 

210 

rice region of 
chloroplast 

rice_cp TTACACCGCACACCCCTG; 
AGACCCGTTCCTTTTGGTATC 

99 

rice 26S rRNA rice_rrn26 TTTGGCGACCAGCAAACTCT; 
TCATCCCTTGCTTCAAAACTAC 

54 

sugar 
beet 

adenylate 
transporter (ant) 
(Chaouachi et al., 
2013) 

beet_ant CAGTATATTTTAGTCAATTCCAAG; 
ACATTTTCTGTCTGGTCTACTACC 

135 

sugar 
beet 

unknown region 
(Oguchi et al., 
2009) 

beet01 GCCCCCAAAAACCCTTCA; 
GGGCAATTTGGTAGGCTTCTT 

116 

sugar 
beet 

unknown region 
(Oguchi et al., 
2009) 

beet02 ATCCCTGCAGCCATCAGTGA; 
ACCAGTAAGCCACTCAACAGTCAA 

121 

sugar 
beet 

maturase K (matK) beet_matk CCCAGACCGACTTACTAACG; 
ATTCCTCTGGTTGGATCCTTG 

76 

sugar open reading beet_orf409 GATCTTCCCAACCCATATGGA; 56 
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Target Target 
species species 

Target gene Target gene Name Name Primer Sequences 5'-3' (F; R*) Primer Sequences 5'-3' (F; R*) Amplicon Amplicon 
length length 

(bp) (bp) 

beet frame 409 (orf409) GGCGAATAAAGTCCGACAGTA 

*forward sequence; reverse sequence 

4.4. PCR and qPCR 4.4. PCR and qPCR 

4.4.1. PCR protocol 4.4.1. PCR protocol 
The PCR was performed in a 10 µL reaction using 10X DreamTaq Buffer 
(ThermoFisher Scientific, UK), consisting of 0.2 mM dNTPs, 2 mM MgCl2, 
1.25 U Dream Taq DNA polymerase, 0.5 µM of forward and reverse primer 
(Life Technologies Ltd, UK) and 1 uL DNA extract or water for negative 
control. The thermocycler (PTC-200, BioRad) conditions are shown in Table 
4. 

The products were run on a 2 % agarose gel at 100 V for 45 minutes and 
stained with SafeView dye (NBS Biologicals Ltd., UK) with the GeneRuler 
DNA ladder (ThermoFisher Scientific, UK) for size comparison. 

Table 4. Thermocycler conditions for PCR 

PCR step PCR step Temperature (°C) Temperature (°C) Time Time Cycles Cycles 

initial denaturation initial denaturation 95 3 min 1 

denaturation denaturation 95 30 secs 35 

annealing annealing 65 30 secs 35 

extension extension 72 30 secs 35 

final extension final extension 72 5 mins 1 

4.4.2. qPCR protocol 4.4.2. qPCR protocol 
For qPCR a 10 µL final reaction volume was generated using SsoAdvanced 
Universal SYBR Green Supermix (BioRad, UK) containing antibody-
mediated hot-start Sso7d fusion polymerase, dNTPs, MgCl2 and SYBR 
Green I dye, with 0.5 µM forward and reverse primers and 1 µL DNA 
extract or water. The reaction was run on the CFX96 Touch Real-Time PCR 
Detection System (Bio-Rad, UK) using the conditions in Table 5. 

Table 5. Thermocycler conditions for qPCR 

qPCR conditions qPCR conditions Temperature (°C) Temperature (°C) Time Time Cycles Cycles 

initial denaturing initial denaturing 95 3 min 1 

denaturing denaturing 95 15 secs 40 

annealing/extension annealing/extension 65 30 secs 40 

melt curve melt curve 65 - 95 at 0.5 increments - - 
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The results were assessed either by using the raw Cq value calculated by 
CFX (CFX Maestro Version 2.3) applying a single threshold with baseline 
subtracted curve fit, or by scaling the data to set the amplification for the 
marker of interest at 100 % for the target plant. This was done by the 
following calculation: 

Where: 

No. cycles is the number of cycles the qPCR ran for. 

Cq(sample) is the Cq value obtained for the sample for the marker of 
interest. 

Cq(control) is the Cq value obtained for the target plant control for the 
marker of interest. 

For all results the average Cq and standard deviation (SD) was calculated 
from three replicate qPCR reactions. PCR negative controls were included 
in all tests, for the trnL_P6 amplification was sometimes seen above 35 
cycles due to the high sensitivity of the marker to all plant DNA, this is 
respectively shown in the results tables. 

4.5. SORS measurements and Multivariate 4.5. SORS measurements and Multivariate 
Analysis Analysis 

4.5.1. Sample Preparation and Spectra Acquisition 4.5.1. Sample Preparation and Spectra Acquisition 
The samples selected for SORS consisted of the same pure honeys as Table 
1, and selected sugar syrups from Table 2 including R1-4, R6-8, B1 and 
B5-7. The excluded samples included the control samples (homemade rice 
syrup R5, granulated sugar B3, homemade syrup prepared from B3) and 
the bee feed syrup B2, as it was assumed that these would not represent 
syrups which could be used to adulterate honey. The pure honey samples 
were liquified at 45 °C for 60 minutes and stirred until homogenous. A 
subsample of each honey sample was spiked with rice syrup 1 and beet 
syrup 5 at 10%, 20%, 30% and 50% adulteration level to a total mass of 
10 g (w/w). These syrups were selected based on colour and consistency 
similarity with the majority of the pure honeys. All the samples were 
further incubated at 45 °C for 60 min in a water bath, with constant 
agitation to obtain a homogenous mixture. All samples were taken out 
of the water bath and left to reach room temperature before being 
transferred to 7 mL Pico Glass vials (Perker Elmin, Buckinghamshire) for 
SORS measurements. Apart from the honey and syrup samples, a set 
of individual sugar standards were prepared consisting of 50 % aqueous 
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solutions (w/v) of fructose, glucose, sucrose and maltose. Two HPLC water 
samples were also used as “blanks”. The SORS measurements took place 
at The Central Laser Facility (CLF, Rutherford Appleton Laboratory, UK) 
using a custom-made set up optimised to performed Raman measurement 
in a conventional point-like spatial offset Raman spectroscopy (SORS) 
described in detail (Mosca et al., 2019, 2021). Briefly, the excitation source 
consisted of an 830 nm wavelength with maximum power of 400 mW 
output power focused on ∼0.5 mm diameter size spot on the sample 
surface. The Raman signal was collected from a spot with an∼1.5 mm 
diameter at different spatial displacement (i.e. ‘so’) from the excitation 
location (so=0 mm; so=4 mm). For each sample, three different locations 
were measured as shown in Figure A 3 (Appendices). Each SORS spectra 
were acquired using 35 mW laser power, an acquisition time of 1 s and 10 
accumulations (i.e., total time 100 s) for both zero and 4 mm spatial offset. 

4.5.2. Data Pretreatment 4.5.2. Data Pretreatment 
All data analysis was conducted using the R environment (R version 4.3.2). 
The raw dataset consisted of a 2-dimentional numerical matrix with the 
rows corresponding to the samples and the columns corresponding to the 
Raman shift (cm-1) between 111.92 and 1965.3 cm-1. The dataset consisted 
of 179 samples (pure honeys = 17, spiked honeys = 136, rice syrups = 
7, sugar beet syrups = 4, individual sugar solutions = 4 at 3 different 
concentrations (50, 25, 12.5%), blank (water) = 2, with all measurements 
taken in triplicate plus 3 samples repeated at different timepoints). 

The raw data were subjected to quality control and pretreatment before 
proceeding with the construction of predictive models using machine 
learning algorithms. To begin with, the wavelengths at the peripheries 
were cut so that the spectral range was restricted from 585 cm-1 to 1550 
cm-1 as this contained the structural information-rich areas of the spectra. 

Baseline correction was subsequently performed using a modified 
polynomial fitting method from the R package baseline (version 1.3-4) 
(Chaouachi et al., 2013). This method subtracts the fluorescence signal 
from the fluorophores within the honey or syrup matrix which suppresses 
the Raman signal. 

The matrix of the baseline-corrected spectra was smoothed using the 
Savitzky Golay method for smoothing (differentiation order = 0, polynomial 
order = 7, and window size = 31) and differentiation included in the R 
library prospectr (version 0.2.6). This method reduces a signal high-
frequency noise by smoothing and reduces the low-frequency signal using 
differentiation (Gallagher, n.d.). 
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Following baseline correction, the spectra were normalised using the 
standard normal variate (SNV) method from the “prospectr” package. This 
method normalises each row of the smoothed matrix (corresponding to 
a single SORS measurement) by subtracting each row by its mean and 
dividing it by its standard deviation. It effectively eliminates the constant 
offset and multiplicative differences between spectra. 

Finally, the mean of the three technical replicates was taken for each 
sample was then calculated. Figure 1 shows the average SORS spectra for 
the 17 pure honeys before and after preprocessing. 

Figure 1. SORS spectra corresponding to the 17 pure honeys collected in Year 2 before (A) and 
after (B) preprocessing. 
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4.5.3. Exploratory Data Analysis (EDA) using Principal 4.5.3. Exploratory Data Analysis (EDA) using Principal 
Component Analysis (PCA) Component Analysis (PCA) 
PCA is an unsupervised multivariate analysis which performs data 
reduction and denoising and can be used to visualise the natural clustering 
of the samples for exploratory data analysis purposes and quality control. 
Based on the PCA results, a total of 14 honey types which showed similar 
spectral fingerprint were selected for developing machine learning 
classification and regression models. 

4.5.4. Predictive Modelling using Machine Learning 4.5.4. Predictive Modelling using Machine Learning 
A range of different classification and regression models was constructed 
based on the SORS spectra with the aim of selecting the best performing 
algorithm and assessing the potential of detecting the type and level of 
adulteration in UK honeys. The process followed was divided in the three 
stages described below and also displayed in Figure 2: 

Stage 1: creating separate models for 
rice and sugar beet adulteration 
detection.

Stage 2: building a combined 
classification model for identifying both 
the type of adulterant (rice or sugar beet 
syrup) and the level of adulteration. 

Stage 3: building regression models for 
rice syrup and sugar beet syrup 
adulteration for quantative predictions.

Figure 2. Description of the three stages followed for training classification and regression models. 

a) The first stage focused on creating separate models for rice and sugar 
beet adulteration detection. The process for selecting the test set is 
displayed in Figure 3. The dataset for developing the rice syrup 
adulteration model consisted of the SORS spectra for the 14 pure honey 
and the respective rice-spiked honeys at 10%, 20%, 30%, 50% adulteration 
level (70 samples in total). Similarly, the dataset for sugar beet adulteration 
model consisted of the SORS spectra for the 14 pure honeys and the 
respective sugar beet-spiked honeys (70 samples in total). Next, each 
dataset was separated into training and test set for the purpose of 

Developing a New Testing Methodology for Honey Authentication

FSA Research and Evidence 15

https://science.food.gov.uk/article/124522-developing-a-new-testing-methodology-for-honey-authentication/attachment/260946.svg


developing a classification model and testing its performance with an 
independent test set. For each syrup group the training set was formed 
of 12 randomly selected pure honeys and their corresponding spiked 
samples (with rice or sugar beet syrup), while the test set consisted of the 
remaining two pure honeys and their corresponding spiked samples. A 
total of 91 possible combinations for separating the data into training and 
test set were tried and 91 models were subsequently built -per algorithm 
and adulteration type- in order to assess how small changes in the training 
and test data affect model performance. 

Figure 3. Selection of the training and test sets. The dataset consisted of 14 pure honeys and their 
rice-spiked and sugar beet-spiked samples. In each iteration, 12 honeys and their spiked samples 
were chosen as the training set, and the remaining 2 honeys and their spiked samples were chosen 
as the test set. This process was done separately for the rice and sugar beet models. 

The ML algorithms selected for performing classification for rice and sugar 
beet syrup adulteration were the following: Partial Least Squares-
Discriminant Analysis (PLS-DA), Random Forest (RF), Ordinal RF, and 
eXtreme Gradient Boosting (XGBoost). The resulting models for rice syrup 
adulteration assigned unknown samples to one of the following 5 classes: 
honey, 10% rice-spiked, 20% rice-spiked, 30% rice spiked, 50% rice-spiked. 
Similarly, the sugar-beet syrup adulteration models, assigned samples to 5 
classes consisted of pure honey and sugar beet syrup adulterated honeys. 

The selection of algorithms was based on their strong track record for high 
prediction accuracy and suitability for high dimensional datasets. 

PLS-DA is a popular algorithm widely used for classification tasks, 
particularly in complex datasets with high dimensionality and 
multicollinearity, such as spectroscopic data. It combines partial least 
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squares regression with discriminant analysis, seeking to maximize the 
separation between classes while reducing the number of variables used 
for prediction (Gromski et al., 2015). In this study, PLS-DA was performed 
using the mixOmics library (version 6.24.0). 

The RF algorithm is a robust ensemble learning method that operates by 
constructing multiple decision trees during training and outputs a pattern 
of classes (classification) or an average prediction of the individual trees 
(regression). In addition, the ordinal forest (OF) method allows ordinal 
regression for ordinal target values (categorical variables which can be 
ordered). Since the percentage of adulteration can be considered an 
ordinal value ordinal RF was also tested in this project. By aggregating 
predictions from different trees, the RF algorithm minimises the risk of 
overfitting and improves prediction accuracy and generalisation to unseen 
data. Furthermore, by considering random subsets of features for each 
tree, it promotes diversity among individual trees, contributing to its 
efficiency in handling high-dimensional data and reducing variance 
(Breiman, 2001). All RF models were trained and optimised using the caret 
library in R (version 6.0-94). Prior to training the RF models a feature 
extraction pre-treatment step was also considered using RF to select the 
most important features, however, the performance results were 
considerably worse compared to the models built on the whole feature 
space and therefore this step was abandoned. 

XGBoost is another ensemble technique based on decision trees which 
has gained popularity due to its effectiveness and efficiency. The algorithm 
works by iteratively building an ensemble of weak prediction models, 
typically decision trees, and adding them to the ensemble in a sequential 
manner. XGBoost utilizes gradient descent optimization techniques for 
model training and incorporates regularisation techniques such as 
shrinkage and pruning to prevent overfitting and improve generalisation 
performance (Chen & Guestrin, 2016). The XGBoost models were trained 
using the xgboost library (version 1.7.7.1). An added benefit of using 
XGBoost was that the output for each prediction, consists of the respective 
probabilities of the sample belonging to each of the possible classes 
included in the model. 

An additional advantage of all three selected algorithms is their ability to 
identify relevant features or predictors contributing to the classification 
or regression outcomes enhancing the interpretability of the prediction 
models. This can be done by studying the variable importance graphs for 
each model. 

b) The second stage consisted of building a combined classification model 
for identifying both the type of adulterant (rice or sugar beet syrup) and the 
level of adulteration. The dataset for developing the combined adulteration 
model consisted of the SORS spectra for the 14 pure honey and the 
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respective rice and sugar beet spiked honeys at 10, 20, 30 50% adulteration 
level (126 samples in total). Then the dataset was separated into training 
and test set (91 combinations) following the same approach described 
at stage 1, except this time each test set included two pure honeys and 
the respective spiked honeys with both rice and sugar beet syrup. The 
algorithm employed for developing this model was RF. 

c) The final stage consisted of building regression models for rice syrup 
and sugar beet syrup adulteration with the aim to predict the percentage 
of adulteration as a continuous numerical value rather than a categorical 
value. The algorithm employed for regression purposes was RF. 

4.5.5. Performance Metrics 4.5.5. Performance Metrics 
For each of the classification models, the confusion matrix for each of 
the 91 data combinations was used to extract the model accuracy, i.e. 
the ratio of correct predictions over the total number of predictions and 
the total error = 1-accuracy. However, to gain more information on the 
ability of each model to differentiate between pure and adulterated honey 
we introduced two more metrics, the “hard” and “soft” misclassifications. 
Among the “hard” misclassifications were the ratio of pure honey 
misclassified as adulterated and the ratio of adulterated honeys 
misclassified as pure. These are considered as the most serious types of 
misclassifications; thus they were captured separately. In contrast “soft” 
misclassifications were considered less serious errors and represented 
the cases where an adulterated sample was classified as adulterated but 
under the wrong adulteration level. The soft misclassification ratio was also 
captured during this study. 

The metric used for the regression models was the root mean square error 
(RMSE) as shown in Equation (1). 

where n = the number of samples in the test set 

 = the predicted value 

 = the actual value 

4.6. Sugar composition analysis 4.6. Sugar composition analysis 

4.6.1. HPLC-ELSD analysis 4.6.1. HPLC-ELSD analysis 
Sugar analysis was also undertaken during the project to identify and 
quantify the amount of individual sugars present in the honey samples 
(Table 1), sugar syrup samples (Table 2) and honey spiked with 10% rice 
syrup (R1). All samples were prepared and analysed according to the 
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Harmonised Methods of International Honey Commission (Bogdanov, 
2009) with some modifications. Chromatographic analysis was performed 
using a mobile phase comprised of acetonitrile: water: (80:20, v/v) with 
a flow rate of 0.8 mL/min and a sample injection volume of 10 μL. The 
column and detector temperature were held at 35 °C during the whole run. 
Detection was performed using evaporative light scattering detector (ELSD) 
connected to an Agilent 1200 infinity HPLC (Agilent Technologies, UK) fitted 
with a prevail carbohydrate ES 5mm size of 250 nm x 4.6 mm diameter and 
a guard column of the same type. Fructose, glucose, sucrose and maltose 
were quantified using external calibration curves of commercial standards. 

4.6.2. Statistical analysis 4.6.2. Statistical analysis 
The Welch Two Sample t-test was applied on the individual sugar content 
to compare pure vs rice syrup adulterated honey. The analysis was 
performed in R v4.4.0. 

5. Results 5. Results 

5.1. DNA marker amplification and specificity 5.1. DNA marker amplification and specificity 
PCR reactions were performed for all 10 primer pairs, amplifying specific 
regions of nuclear (nDNA), mitochondrial (mtDNA) or chloroplast (cpDNA) 
DNA of the rice, corn and sugar beet DNA extracts. Corn was included 
in these tests to ensure there was no cross amplification in non-specific 
species (Table 6). 

Table 6. PCR amplification of DNA markers with plant control extracts (Positive amplification is 
indicated by + and no amplification by -) 

Marker Marker rice rice corn corn sugar beet sugar beet 

trnL_P6 + + + 

rice_PLD1 + + - 

rice_Zmet3 + - - 

rice_cp + - - 

rice_rrn26 + - - 

beet_ant - - - 

beet01 - - + 

beet02 - - + 

beet_matK - - + 

beet_orf409 - - + 

The plant positive control marker (trnL_P6) was amplified in all three of the 
plant extracts. Of the rice markers the PLD_1 was amplified in both rice 
and corn, but the Zmet3, cp and rrn26 were specific to the rice extract. 
For sugar beet the ant marker was not successfully amplified, while 01, 02, 
matK and orf409 were only amplified in the sugar beet extract. 
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The amplification success of the markers was then compared using qPCR, 
where a lower Cq value indicated a higher amount of target was present 
in the sample (Table 7). These results confirmed that the rice_PLD1 was 
amplified in both rice and corn, with sugar beet also amplifying rice_PLD1 
after 35 cycles, explaining why it wasn’t detected in the conventional PCR. 
Similarly, rice_cp showed late amplification in both corn and sugar beet 
extracts (Cq 38.42 and 38.59). All other markers were only amplified in 
the species of interest, apart from the beet_ant marker which failed to 
amplify. In general, the specific markers targeting nDNA produced results 
with higher Cq values for the target species (Cq 22.30-23.04), the mtDNA 
markers produced Cq values of 18.46-18.88 whilst the cpDNA markers 
produced the lowest Cq values between 15.45-16.48 for the target species. 
However, the chloroplast markers for rice showed a lower specificity, 
suggesting that the mitochondrial markers might be a better choice for 
species specificity. 

Table 7. qPCR amplification (Cq ) of DNA markers with plant control extracts (No amplification is 
indicated by -) 

Marker Marker Target genome* Target genome* rice Crice Cq q corn Ccorn Cq q sugar beet Csugar beet Cq q 

trnL_P6 cp 15.11 15.01 15.17 

rice_PLD1 n 23.04 26.4 35.97 

rice_Zmet3 n 22.30 - - 

rice_cp cp 16.48 38.42 38.59 

rice_rrn26 mt 18.88 - - 

beet_ant n - - - 

beet01 u - - 24.62 

beet02 u - - 28.54 

beet_matK cp - - 15.45 

beet_orf409 mt - - 18.46 

* target genome; cp: chloroplast, mt: mitochondria, n: nuclear, u: unknown 

5.2. DNA extraction from sugar syrups 5.2. DNA extraction from sugar syrups 

5.2.1. Amplification of general plant marker 5.2.1. Amplification of general plant marker 
The two DNA kits QIAGEN DNeasy Plant Pro and Macherery-Nagel 
Nucleospin Food Kit were used to extract plant DNA from the sugar syrups, 
and extraction efficiency was evaluated by assessing the amplification of 
the chloroplast trnL P6 loop with qPCR, to evaluate the yield of plant DNA 
(Figure 4, Table 8). 
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Figure 4. Comparison of the amplification (Cq value) of the trnL_P6 marker with sugar syrup DNA 
extractions prepared from different extraction kits. Error bars representing the standard deviation 
from three PCR reactions. 

For both kits the DNA extraction was successful, with the trnL_P6 marker 
displaying amplification above 32 cycles in all samples, which is notable 
given the difficult sample matrix. For all samples the Cq value was lower 
for the Nucleospin Food kit, indicating a higher plant DNA yield with this 
kit. Samples B4-7 were not extracted using the Plant Pro kit therefore not 
included in this analysis. The Nucleospin Food kit was subsequently used 
for further extractions in this study. 

Table 8. Comparison of the amplification (Cq value) of the trnL_P6 marker with sugar syrup DNA 
extractions prepared from different extraction kits. 

Sample Sample CCqq  (Nucleospin) (Nucleospin) CCqq  (Plant Pro) (Plant Pro) SD (Nucleospin) SD (Nucleospin) SD (Plant Pro) SD (Plant Pro) 

R1 23.63 27.83 0.14 0.17 

R2 26.52 30.75 0.07 0.26 

R3 26.97 31.04 0.11 0.88 

R4 24.52 26.8 0.14 1.06 

R5 17.9 20.79 0.08 0.07 

R6 27.45 29.92 0.56 0.62 

R7 27.17 28.72 0.11 0.1 

S1 28.14 31.31 0.56 0.98 

S2 29.24 31.53 0.11 0.27 
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Sample Sample CCqq  (Nucleospin) (Nucleospin) CCqq  (Plant Pro) (Plant Pro) SD (Nucleospin) SD (Nucleospin) SD (Plant Pro) SD (Plant Pro) 

B1 25.89 29.46 0.39 0.45 

B2 27.06 30.81 0.16 0.08 

B3 24.82 30.51 0.07 2.63 

5.2.2. Amplification of plant specific markers 5.2.2. Amplification of plant specific markers 
Based on the specific marker amplification results, one marker was 
selected for each species: rice_rrn26 for rice, and beet_matK for sugar beet. 
All syrup DNA extracts were evaluated for marker amplification by qPCR. 
The results, shown in Figure 5, are scaled where the amplification of the 
target plant was set at 100% after applying a single threshold with baseline 
subtraction to the data. The standardised Cq and SD values are shown in 
Table 9, including the trnL_P6 plant marker results for comparison. 

All rice syrups showed amplification for the rice_rrn26 marker, ranging 
from Cq 19.73 (R5) to Cq 37.32 (R7). Late amplification for rice_rrn26 was 
seen in the sugar syrups of unknown origin (S1 and S2), but with high 
Cq values ranging from 35.33-37.59. The beet_matK marker did not show 
strong amplification in any sample other than the sugar beet plant extract. 
The sugar beet syrup extracts showed Cq values between 33.44-35.68 for 
beet_matK, with no amplification in B4, B5 and B7. Similar amplification 
values were seen for beet_matK across the other sugar syrups (Cq 
33.48-36.69), leading to the conclusion that this is unlikely to be linked 
to the presence of sugar beet DNA in the samples. Therefore, no further 
work was carried out with the beet_matK marker. All three of the other 
successful beet markers (beet01, beet02 and beet_orf409) were also tried 
with the sugar beet syrup extracts, with no amplification success (results 
not shown). 
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Figure 5. Amplification of DNA markers (A) rice_rrn26 and (B) beet_matK with plant and sugar syrup 
extracts. Amplification is scaled where amplification for the target plant is set at 100% and error 
bars representing the standard deviation from three PCR reactions. 

Table 9. Amplification of DNA markers with sugar syrup extracts and plant control extracts 

- - trnL_P6 trnL_P6 trnL_P6 trnL_P6 rice_rrn26 rice_rrn26 rice_rrn26 rice_rrn26 beet_matK beet_matK beet_matK beet_matK 

sample sample CCq q SD SD CCq q SD SD CCq q SD SD 

rice 15.26 0.07 17.32 0.11 * * 

R1 23.32 0.04 22.65 0.02 34.59 0.59 

R2 26.29 0.11 26.27 0.09 34.18 0.03 

R3 26.42 0.08 34.02 0.43 35.35 1.45 

R4 24.4 0.06 23.3 0.15 34.31 1.26 

R5 17.43 0.03 19.73 0.02 33.48 0.28 

R6 27.81 0.43 33.8 0.31 35.69 0.62 

R7 26.78 0.09 37.32 0.25 * * 

S1 27.98 0.53 37.03 0.8 * * 

S2 28.69 0.19 37.59 0.22 * * 

beet 14.59 0.07 * * 14.97 0.13 

B1 25.6 0.11 * * 33.44 0.5 

B2 25.84 0.88 * * 35.68 0.34 

B3 24.19 0.06 * * 34.47 0.77 

B4 29.61 0.87 * * * * 

B5 31.69 0.66 * * * * 

B6 28.89 0.1 * * 34.72 0.95 

B7 30.01 0.75 * * * * 

negative 36.31 0.70 * * * * 

* no amplification 
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5.3. Detection of rice marker in adulterated 5.3. Detection of rice marker in adulterated 
honey samples honey samples 
To reproduce adulterated honey rice syrups R1, R2 and R4, were selected 
to spike natural honey H17 and the results are shown in Figure 6. The rice 
marker was detected in 1% spiked honey, with Cq values proportionate to 
the percentage spike, except in the case of R1 where the 5% spiked sample 
had a lower value (Cq 25.09) than the 30% (Cq 26.84) and 10% (Cq 26.73) 
spike (Table 10). 

Figure 6. Amplification of DNA marker rice_rrn26 for honey spiked with rice syrups (A) R1, (B) R2 
and (C) R4. Amplification scaled where the rice control extract is set at 100% and error bars 
represent the standard deviation from three PCR reactions and error bars represent the standard 
deviation from three PCR reactions. 

For the rice marker there was a very low amplification in the pure honey 
sample (0% spike) however this had a considerably higher Cq value than 
the 1% spiked sample, with a difference of between ~8-10 cycles for the 
rice marker, permitting the clear separation of pure honey from the lowest 
1% spike. 

Table 10. Amplification of rice marker rice_rrn26 in honey (H17) spiked with different rice syrups. 

spike spike R1 CR1 Cq q R1 SD R1 SD R2 CR2 Cq q R2 SD R2 SD R4 CR4 Cq q R4 SD R4 SD 

100% 22.19 0.23 25.26 0.26 21.74 0.06 

30% 26.84 1.54 26.16 0.03 23.2 0.07 

10% 26.73 0.96 27.27 0.11 24.54 0.11 

5% 25.09 0.16 27.98 0.13 24.94 0.06 

1% 29.47 0.2 29.39 0.04 27.25 0.17 

0% 37.25 2.75 37.25 1.21 37.25 1.21 

negative * * * * * * 

* no amplification 
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5.4. Rice marker amplification in different 5.4. Rice marker amplification in different 
honey types honey types 

5.4.1. Rice marker background amplification 5.4.1. Rice marker background amplification 
To account for the background amplification of the rice marker detected 
in natural honey, the rice_rrn26 marker was tested for amplification in 
16 different honey types, in order to determine a threshold value for 
the method. Honey H15 was excluded from the results as there was no 
amplification with the trnL_P6 marker used as a control for the plant DNA 
(values shown in Table 11). The rice marker was amplified in 8 out of 
16 honey samples, with the buckwheat honey (H8) showing the strongest 
amplification with a Cq value of 35.89. To ensure the test would not flag 
natural honey as adulterated honey, a threshold was set by taking the 
sample with the lowest Cq and adding a 95% confidence interval. This was 
done using the data which had been standardised by applying a single 
threshold with baseline subtraction, to account for differences in 
instrument response. For rice the threshold was 34.27 cycles, which is 
shown on Figure 7 as the dashed line. 
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Figure 7. Amplification of rice marker rice_rrn26 in pure honey samples. Amplification is scaled to 
100%, with the axis break indicated as = and error bars represent the standard deviation of three 
PCR reactions. 

Table 11. Amplification of pure honeys with plant marker trnL_P6 and rice marker rice_rrn26 

- - trnL_P6 trnL_P6 trnL_P6 trnL_P6 rice_rrn26 rice_rrn26 rice_rrn26 rice_rrn26 

sample sample CCq q SD SD CCq q SD SD 

H01 26.46 0.24 * * 

H02 21.38 0.11 * * 

H03 26.60 0.05 * * 

H04 27.16 0.09 * * 

H05 26.18 0.15 * * 

H06 21.68 0.1 * * 

H07 28.86 0.31 * * 

H08 27.81 1.66 35.89 0.83 

H09 23.42 0.39 36.4 0.76 

H10 24.94 1.76 * * 

H11 20.77 0.11 37.23 0.84 

H12 24.58 0.05 37.22 1.14 

H13 21.5 0.08 37.54 0.87 
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- - trnL_P6 trnL_P6 trnL_P6 trnL_P6 rice_rrn26 rice_rrn26 rice_rrn26 rice_rrn26 

sample sample CCq q SD SD CCq q SD SD 

H14 24.34 1.3 37.61 0.12 

H15 * * * * 

H16 21.21 0.13 39.34 0.57 

H17 24.39 0.07 36.45 1.7 

negative * * * * 

*no amplification 

5.4.2. Rice marker amplification in 5% spiked honeys 5.4.2. Rice marker amplification in 5% spiked honeys 
Each honey type was spiked with 5% rice syrup R1 and tested for the 
rice_rrn26 marker amplification to determine the suitability of the test for 
different honeys. Extracts which did not show amplification for the plant 
trnL_P6 loop were excluded from the analysis (H04, H10 and H15), as 
shown in Table 12. All spiked honey samples showed amplification for the 
rice_rrn26 marker above the threshold of 34.27 cycles (equalling 25.03% 
when scaled) (Figure 8). 
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Figure 8. Amplification of rice_rrn26 in different honey types spiked with 5% rice syrup 1. 
Amplification is scaled where the rice plant control was set at 100% and error bars represent the 
standard deviation from three replicates. The axis limit is set to show above the rice threshold 
(25.03%). 

Table 12. Amplification of plant marker trnL_P6 and rice marker rice_rrn26 in 5% spiked honey 

- - - - trnL_P6 trnL_P6 trnL_P6 trnL_P6 rice_rrn26 rice_rrn26 rice_rrn26 rice_rrn26 

Honey Honey Spike (%) Spike (%) CCq q SD SD CCq q SD SD 

H01 0 25.83 0.2 * * 

H01 5 26.29 0.04 28.88 0.3 

H02 0 20.14 0.08 * * 

H02 5 19.43 0.04 26.59 0.11 

H03 0 25.99 0.09 * * 

H03 5 23.31 0.09 26.02 0.06 

H04 0 26.34 0.05 * * 

H04 5 * * * * 

H05 0 25.26 0.14 * * 

H05 5 25.12 0.21 26.34 0.1 

H06 0 20.97 0.16 * * 

H06 5 21.01 0.1 27.09 0.06 
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- - - - trnL_P6 trnL_P6 trnL_P6 trnL_P6 rice_rrn26 rice_rrn26 rice_rrn26 rice_rrn26 

Honey Honey Spike (%) Spike (%) CCq q SD SD CCq q SD SD 

H07 0 28.41 0.4 * * 

H07 5 26.18 0.6 25.46 0.11 

H08 0 25.42 0.13 * * 

H08 5 25.49 0.09 25.69 0.37 

H09 0 22.32 0.02 * * 

H09 5 23.48 0.09 29.59 2.59 

H10 0 24.94 1.76 * * 

H10 5 * * * * 

H11 0 20.77 0.11 * * 

H11 5 19.87 0.16 28.13 1.31 

H12 0 23.96 0.07 36.08 1.14 

H12 5 25.5 0.06 27.68 NA 

H13 0 22.01 2.2 37.74 0.26 

H13 5 19.47 0.01 27.22 NA 

H14 0 24.34 1.3 * * 

H14 5 24.96 1.87 31.02 NA 

H15 0 * * * * 

H15 5 * * * * 

H16 0 21.21 0.13 39.34 0.57 

H16 5 22.09 0.2 24.91 0.09 

H17 0 22.58 0.08 36.45 1.7 

H17 5 24.23 0.92 24.7 0.08 

negative 0 * * * * 

*no amplification 

NA: means there is no SD as the marker was only amplified in 1/3 replicates 

5.4.3. Application to commercial honeys 5.4.3. Application to commercial honeys 
Commercial samples marketed as UK origin honeys were purchased from 
the UK market and extracted with the described protocol. The honey 
extracts were tested for amplification of the trnL_P6 and rice_rrn26 
markers (Table 13). Three of the commercial honey extracts (CH2 - CH4) 
showed good amplification of plant DNA based on the trnL P6 marker 
(Cq 19.16 to 23.97), but one commercial honey extract (CH1) showed no 
amplification for the plant DNA marker. Of the three honeys which 
amplified the control plant marker there was no amplification of the 
rice_rrn26 marker. 

Table 13. Amplification of commercial honey extracts with plant marker trnL_p6 and rice marker 
rrn26. 

- - trnL_P6 trnL_P6 trnL_P6 trnL_P6 rice_rrn26 rice_rrn26 rice_rrn26 rice_rrn26 

Sample Sample CCq q SD SD CCq q SD SD 

CH1 19.23 0.19 * * 
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- - trnL_P6 trnL_P6 trnL_P6 trnL_P6 rice_rrn26 rice_rrn26 rice_rrn26 rice_rrn26 

Sample Sample CCq q SD SD CCq q SD SD 

CH2 19.16 0.06 * * 

CH3 23.97 0.31 * * 

CH4 19.23 0.19 * * 

negative * * * * 

*no amplification 

5.5. Sugar composition of pure, spiked and 5.5. Sugar composition of pure, spiked and 
commercial honey samples commercial honey samples 
Each sugar syrup, honey type, honey type spiked at 10% with R1 and 
commercial honey was subjected to HPLC-ELSD analysis to quantify the 
amount of fructose, glucose, sucrose and maltose in the sample (Table 
14). Based on the obtained results and considering a 95% confidence 
interval, the 17 pure honey samples and 4 commercial honey samples 
were all below the 5 g/100g limit for sucrose. Even H07 and CH4, the 
borage honeys, which have an increased limit of 15 g/100g according to 
legislation (Codex Alimentarius, 2022; Honey (England) Regulations, 2015). 
However, when assessing the sum of fructose and glucose, one honey 
sample (H11) was under the 60 g/100g limit with a value of 56.79 g/100g, 
meaning it would not comply with the honey regulations. All commercial 
honey samples were within regulation for sugar composition. 
Compositional analysis of the rice syrup used for spiking (R1) showed that 
it was composed of 1.49 g/100g fructose, 22.49 g/100g glucose, 0.22 g/
100g sucrose and 31.90 g/100g of maltose, with a fructose-glucose sum of 
23.99 g/100g. Therefore, it is not surprising that the sucrose level of the 
honeys spiked with R1 did not increase over the legislated 5 g/100g or 15 
g/100g threshold. In all 17 of the honey types spiked with rice syrup, the 
total of fructose and glucose fell below the 60 g/100g legislation, with a 
mean concentration of 67.27 g/100g before spiking, and 50.57 g/100g after 
spiking. Consequently, these pseudo-adulterated samples would have 
been flagged as non-compliant of the honey standard regulations. 
Moreover, the maltose concentration of R1-spiked samples was 
significantly elevated compared to the pure honeys with mean 
concentrations of 1.43 g/100g and 3.47 g/100g respectively (p < 0.01). 

Table 14. Sugar composition of honey, honey spiked with 10% rice syrup (R1) and syrup samples 

Sample Sample Spike Spike 
(%) (%) 

Fructose (g/Fructose (g/
100g) 100g) 

Glucose (g/Glucose (g/
100g) 100g) 

Sucrose (g/Sucrose (g/
100g) 100g) 

Maltose (g/Maltose (g/
100g) 100g) 

F+G (g/F+G (g/
100g) 100g) 

H01 0 36.18 29.00 0.99 2.14 65.18 

H01 10 26.74 22.53 0.72 3.88 49.27 

H02 0 38.37 30.80 1.41 0.58 69.17 

H02 10 26.36 22.76 1.08 2.89 49.11 
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Sample Sample Spike Spike 
(%) (%) 

Fructose (g/Fructose (g/
100g) 100g) 

Glucose (g/Glucose (g/
100g) 100g) 

Sucrose (g/Sucrose (g/
100g) 100g) 

Maltose (g/Maltose (g/
100g) 100g) 

F+G (g/F+G (g/
100g) 100g) 

H03 0 38.96 31.76 1.84 2.16 70.72 

H03 10 27.71 22.28 2.50 3.06 49.98 

H04 0 33.35 38.18 0.59 1.90 71.53 

H04 10 23.42 27.67 1.08 3.59 51.09 

H05 0 37.92 28.75 0.91 0.98 66.67 

H05 10 27.70 22.49 0.74 4.24 50.19 

H06 0 38.10 35.58 0.68 0.75 73.68 

H06 10 26.86 26.75 0.54 2.91 53.61 

H07 0 37.26 31.24 4.86 2.75 68.49 

H07 10 26.31 23.21 3.27 4.39 49.52 

H08 0 35.09 35.32 1.37 0.21 70.42 

H08 10 26.05 24.50 0.99 2.62 50.55 

H09 0 37.87 35.19 0.50 1.70 73.06 

H09 10 26.74 24.83 0.33 2.60 51.56 

H10 0 34.11 26.43 0.55 1.73 60.54 

H10 10 27.34 23.36 0.47 2.94 50.70 

H11 0 33.51 23.29 1.23 0.52 56.80 

H11 10 28.73 21.96 1.04 3.30 50.68 

H12 0 32.93 26.33 0.77 1.78 59.26 

H12 10 27.33 23.46 0.66 3.91 50.79 

H13 0 33.53 26.10 0.65 0.67 59.64 

H13 10 27.70 21.47 0.70 2.68 49.16 

H14 0 33.02 26.44 1.13 0.80 59.46 

H14 10 27.78 23.38 0.99 4.13 51.16 

H15 0 41.61 33.92 0.96 1.95 75.54 

H15 10 27.93 24.05 0.56 4.42 51.98 

H16 0 38.74 31.93 1.50 0.33 70.66 

H16 10 26.61 23.24 1.03 3.68 49.85 

H17 0 40.81 32.00 4.15 3.41 72.81 

H17 10 28.11 22.28 2.77 3.78 50.39 

CH1 0 37.69 30.72 4.90 0.46 68.42 

CH2 0 44.69 33.59 1.94 0.45 78.27 

CH3 0 43.05 31.34 3.35 0.51 74.39 

CH4 0 35.84 30.48 4.25 3.04 66.32 

R1 0 1.49 22.49 0.22 31.90 23.99 

R2 0 1.49 23.31 0.25 28.57 24.80 

R3 0 1.68 17.34 0.85 42.59 19.02 

R4 0 1.77 9.54 1.51 28.94 11.31 

R5 0 1.65 9.76 0.50 12.39 11.41 

R6 0 1.49 23.01 0.32 36.70 24.51 

R7 0 1.79 26.90 0.62 37.14 28.69 

R8 0 3.58 28.11 1.49 33.10 31.69 

C1 0 1.49 0.82 0.75 41.16 2.31 
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Sample Sample Spike Spike 
(%) (%) 

Fructose (g/Fructose (g/
100g) 100g) 

Glucose (g/Glucose (g/
100g) 100g) 

Sucrose (g/Sucrose (g/
100g) 100g) 

Maltose (g/Maltose (g/
100g) 100g) 

F+G (g/F+G (g/
100g) 100g) 

C2 0 1.79 22.53 0.86 33.48 24.32 

C3 0 1.49 1.56 1.93 50.86 3.05 

S1 0 1.83 17.19 0.54 8.97 19.01 

S2 0 5.12 23.24 18.95 0.30 28.36 

B1 0 19.03 16.40 27.34 0.21 35.43 

B2 0 39.71 31.03 7.92 0.30 70.74 

B4 0 1.49 0.43 53.99 0.29 1.92 

B5 0 24.74 24.37 31.52 0.27 49.11 

B6 0 23.88 26.97 34.64 0.40 50.85 

B7 0 24.13 23.67 31.64 0.28 47.80 

5.6. SORS Results 5.6. SORS Results 
The following sections describe the results acquired using SORS coupled 
with multivariate analysis and machine learning for prediction purposes. 

5.6.1. PCA 5.6.1. PCA 
PCA plot was employed to visualise the clustering of the samples as part of 
the exploratory data analysis. Figure 9 shows a PCA plot containing the 17 
pure honey samples, the sugar beet and rice syrups, the individual sugar 
standards (50, 25, and 12.5% w/v) and the water samples (blanks). 
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Figure 9. PCA plot of the SORS spectra acquired for honeys, sugar syrups, and sugar aqueous 
solutions. Pure honeys (H1–H17) are coloured in green, sugar beet syrups (b01 and b05–b07) in 
blue, and rice syrups (r01–r04 and r06–r08) in orange. The two blanks are water, while the 
individual sugars fructose (f), glucose (g), sucrose (s), and maltose (m) are 50, 25, and 12.5% w/v 
aqueous solutions. 

By observing the sample clustering, it becomes obvious that the majority 
of the pure honeys formed a tight cluster on the bottom right side of the 
PCA score plot, indicating similar biochemical profiles. The 14 honeys that 
clustered close together were woodland, sycamore, phacelia, Himalayan 
balsam, spring set, borage, meadowfoam, sea lavender, echium, field and 
forest, hedgerow, English blossom, apple blossom, and wildflower. 
buckwheat (H8) and ivy honey (H4) were positioned away from the main 
cluster towards the upper middle area of the PCA plot, while heather 
honey (H11) was positioned in between. Figure A 1 (Appendices) shows the 
colour differences among the different types of honey, with the ivy (H4) 
and buckwheat (H8) having distinctly dark amber colours. 

Most rice syrups formed a cluster at the right middle side of the PCA plot 
with the exception of R3 and R4, which were the darkest rice syrups as 
shown in Figure A 2 (Appendices). Interestingly, maltose and glucose also 

Developing a New Testing Methodology for Honey Authentication

FSA Research and Evidence 33

https://science.food.gov.uk/article/124522-developing-a-new-testing-methodology-for-honey-authentication/attachment/260964.svg


clustered closely to the rice syrups which indicated that they were the 
dominant sugars in rice syrups. On the contrary, two of the sugar beet 
syrups (B5 and B6) were positioned relatively close to the 14 pure honeys, 
together with the 50% sucrose aqueous solution, while the other two sugar 
beet syrups were spread towards the top middle of the PCA plot. Sugar 
beet syrups 5 and 6 were marketed as high fructose “golden syrups” which 
might explain their proximity to the 14 honeys. On the other hand, sugar 
beet syrups B1 was marketed as molasses and B7 was a blend of a sugar 
beet and sugar cane syrup. Both of these syrups had a distinct dark brown 
colour and produced a high intensity SORS signal and strong fluorescence 
interference similar to the signal from ivy and buckwheat honeys which 
were also dark honeys. 

The sugar composition of the sugar syrups and pure honeys was further 
confirmed by HPLC-ELSD, and the results are displayed in Table 14. The 
sugar composition results show that the dominant sugars in all rice syrups 
were maltose and glucose, with concentrations ranging from 28.57 to 42.59 
g/100 g−1 for maltose and from 9.54 to 28.11 g/100 g−1 for glucose. Rice 
syrup R1, which was used for spiking the honey samples, contained 31.90 
g/100 g−1 maltose and 22.49 g/100 g−1 glucose. Rice syrups R3 and R4 
exhibited the lowest glucose concentrations among the rice syrups, at 
17.34 and 9.54 g/100 g−1, respectively, while R4 also had the highest 
maltose concentration, indicating a lower degree of maltose conversion to 
glucose in this syrup. Figure A 4A (Appendices), depicting the processed 
Raman spectra for all the rice syrups along with maltose and glucose 
solutions (50% w/v), also shows significant variations in the Raman profiles 
of R3 and R4. However, by looking at the biplot in Figure A 4B (Appendices), 
showing the 150 most important variables for the PCA in Figure 9, it 
becomes apparent that the clustering of maltose; glucose; and rice syrups 
R1, R2, and R6–R8 are primarily driven by the Raman shifts around 
1380–1390 cm−1, while the Raman shifts around 1400 cm−1 were 
responsible for the separation of R3 and R4. Therefore, despite the 
apparent differences between rice syrup spectra, the most important 
features contributing to their separation on the PCA plot concentrate 
between 1380 and 1400 cm−1. For sugar beet syrups, the dominant sugar 
was sucrose, at concentrations between 27.33 and 34.63 g/100 g−1, 
followed by fructose and glucose at roughly equal concentrations. For 
B5, which was used for spiking the honey samples, the concentrations of 
sucrose, fructose, and glucose were 31.52, 24.74, and 24.37 g/100 g−1, 
respectively. Based on the clustering patterns observed in Figure 9, the 
group of 14 closely clustered pure honeys were selected for further 
developing prediction models for honey adulteration detection. Figure 10A 
shows the PCA plot of the 14 pure honeys with their corresponding rice-
spiked samples. The sample distribution in the PCA plot shows a very clear 
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linear separation according to the levels of adulteration, with the 20-50% 
adulterated samples being completely separated from the pure honey 
samples. 

A similar pattern was observed for the pure honeys and sugar beet-spiked 
samples, although there was more overlap between samples belonging to 
different adulteration level groups (Figure 10B). The samples belonging to 
the 20–50% adulteration level were also clearly separated from the pure 
honeys, indicating a limit of detection around 10% for both types of sugar 
syrups. In addition, Figure A 5 (Appendices) shows the clustering of pure 
and adulterated samples for both rice and sugar beet-spiked samples, 
which reveals that different levels of the rice-spiked samples are separated 
over a longer distance along the PC1 axis while sugar beet-spiked samples 
are much closer together, forming overlapping clusters. 

5.5.2. Classification Models Results 5.5.2. Classification Models Results 
The performance metrics obtained for each of the algorithms employed 
for rice and sugar beet syrup adulteration detection are summarised in 
Tables 15 - 17. The first two columns show the hard misclassifications, i.e. 
the percentage of pure honeys misclassified as adulterated and vice versa 
for all the 91 different combinations. The third column summarises the 
percentage of soft misclassifications, i.e. adulterated samples assigned to 
the wrong adulteration level. The last column shows the total error rate, 
i.e. the percentage of misclassified samples out of all the samples tested (n 
= 910). 

For the rice syrup classification models the RF classification algorithm had 
the best performance overall compared to the other algorithms tested. In 
particular, only 1.10% of pure honeys were misclassified as adulterated, 
which corresponds to 2 instances out of the total 182 (91 combinations of 
2 pure honeys derived out of 14 pure honeys). In contrast XGBoost had the 
highest percentage of pure honeys misclassified as adulterated at 7.69%, 
while for PLSA-DA and RF-ordinal it was 2.20% and 4.40% respectively. 

When considering the hard misclassification rates for the adulterated 
samples, XGBoost was marginally better at 1.79% followed by the RF 
classification algorithm at 2.61%. It is also notable that for all algorithms 
considered the only adulterated samples misclassified as pure honey 
belonged to the 10% adulteration level, indicating that the level of 
detection (LOD) is around 10% for all methods. 

Regarding the soft misclassifications, both RF algorithms performed best 
(14.15% and 14.97% respectively) compared to the other algorithms, 
exhibiting higher ability to differentiate between adulteration levels. The 
PLSDA had similar performance at 16.07% soft misclassifications while 
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Figure 10. PCA plots showing the clustering of the 14 pure honeys and their corresponding rice 
syrup-spiked samples at different adulteration levels (A) and the clustering of the 14 pure honeys 
and their corresponding sugar beet syrup-spiked samples at different adulteration levels (B). Red 
dots = pure honeys, blue dots = 10% adulteration, green dots = 20% adulteration, purple dots = 
30% adulteration, and orange dots = 50% adulteration. The ellipses represent 95% confidence 
ellipses for each group. 
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the XGBoost algorithm had the highest misclassification rate at 26.10%. 
As expected, all samples belonging to the 50% adulteration level were 
correctly classified by all algorithms. 

The total error rate confirmed that the RF classification algorithm 
performed best with a total of 13.63% total error rate, while XGBoost 
exhibited the highest error rate at 23.85%. 

Table 16 displays the results for the sugar beet classification models, where 
again, the RF classification model had the best results with 15.71% total 
misclassifications and XGBoost also had the lowest accuracy out of all 
with almost 31% misclassifications. The hard misclassifications for RF 
classification model were almost 1% of the pure honey misclassified as 
adulterated, and almost 2% of the adulterated samples were misclassified 
as pure. 

The XGBboost results for each sample consisted of the predicted 
probabilities for each class of adulteration level, Table A 1 shows an 
example of the XGBoost results. The highest probability was chosen as the 
predicted class of the sample. 

Since RF consistently outperformed the other algorithms, it was selected 
as the algorithm of choice for building a model based on the combined 
dataset for rice and sugar beet spiked samples. As seen in Table 17, only 
1.10% of the pure samples were misclassified as adulterated and 3.64% 
of the adulterated samples were misclassified as pure. The total 
misclassifications were 19.23%. In addition, 2.20% of the rice-adulterated 
samples were misclassified as sugar beet adulterated and 4.90% of the 
sugar beet adulterated were misclassified as rice-adulterated. 

The spread of total classification accuracy results for the 91 iterations per 
algorithm and syrup type was further visualised in box plots, as shown in 
Figure A 6 (Appendices). The box plots further demonstrate the superior 
performance of the RF algorithm, with all the models built with RF 
(classification and ordinal) having a median accuracy of around 90% and 
exhibiting left skewness (median > mean), meaning the majority of values 
were “large”, with a few values towards the low end of the accuracy 
spectrum. The only exception was the RF classification models for rice 
syrup adulteration, which had a median around 80% and exhibited right 
skewness. 

Table 15. Results of the classification models for the rice syrup-adulterated samples 

Rice Models Rice Models Honey Honey 
misclassified misclassified 
as adulterated as adulterated 

Adulterated Adulterated 
misclassified misclassified 
as honey as honey 

Adulterated soft Adulterated soft 
misclassifications misclassifications 

Total Total 
misclassifications misclassifications 

PLSDA PLSDA 2.20% 8.79% 16.07% 20.33% 

RF_Classification RF_Classification 1.10% 2.61% 14.15% 13.63% 
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Rice Models Rice Models Honey Honey 
misclassified misclassified 
as adulterated as adulterated 

Adulterated Adulterated 
misclassified misclassified 
as honey as honey 

Adulterated soft Adulterated soft 
misclassifications misclassifications 

Total Total 
misclassifications misclassifications 

RF_Ordinal RF_Ordinal 4.40% 5.63% 14.97% 17.36% 

XGBoost XGBoost 7.69% 1.79% 26.10% 23.85% 

Table 16. Results of the classification models for the sugar beet syrup-adulterated samples 

Sugar Beet Sugar Beet 
Models Models 

Honey Honey 
misclassified misclassified 
as adulterated as adulterated 

Adulterated Adulterated 
misclassified misclassified 
as honey as honey 

Adulterated soft Adulterated soft 
misclassifications misclassifications 

Total Total 
misclassifications misclassifications 

PLSDA PLSDA 1.10% 1.92% 19.51% 17.36% 

RF_Classification RF_Classification 1.10% 2.06% 17.31% 15.71% 

RF_Ordinal RF_Ordinal 1.10% 1.92% 17.72% 15.93% 

XGBoost XGBoost 9.89% 4.53% 31.73% 30.99% 

Table 17. Results of the RF classification model for the adulterated samples combined (rice and 
sugar beet) 

Rice and Sugar Rice and Sugar 
Beet Combined Beet Combined 
Model Model 

Honey Honey 
misclassified misclassified 
as adulterated as adulterated 

Adulterated Adulterated 
misclassified misclassified 
as honey as honey 

Adulterated soft Adulterated soft 
misclassifications misclassifications 

Total Total 
misclassifications misclassifications 

RF_Classification RF_Classification 1.10% 3.64% 17.86% 19.23% 

5.5.3. Regression Models Results 5.5.3. Regression Models Results 
Table 18 shows the mean, max, and min RMSE values acquired for the 
rice and sugar beet regression models after validating with the test set. 
RMSE is one of the most widely used measures for the performance of a 
regression model and the lower the RMSE, the closer the predicted value 
is to the ground truth. This was also demonstrated by calculating the RMSE 
values which were similar for both rice and sugar beet, with a mean value 
of around RMSE = 3.7. 

Table 18. Summary statistics of the RMSE results obtained for the rice and sugar beet adulteration 
regression models with RF based on the test set validation. SD = standard deviation. 

Random Forest Regression Random Forest Regression Minimum RMSE Minimum RMSE Maximum RMSE Maximum RMSE Mean RMSE Mean RMSE 

Rice Rice 0.60 7.56 3.69 

Beet Beet 1.96 7.33 3.67 

Figure 11 shows a scatterplot of predicted vs. actual values for 1 of the 
91 models for rice syrup adulteration (Figure 11A) and 1 of the sugar 
beet adulteration models (Figure 11B). A line, x = y, representing perfect 
agreement between the predictions and the ground truth, has been fitted 
in each plot, surrounded by y = x ± 3 lines, which represent a 6% mismatch 
boundary between the predicted values and ground truth, which 
contained the majority of the predictions for both types of syrups. These 
plots could also provide a useful indication of bias or large variance 
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indicative of undertraining or overtraining of the models. The absence 
of these trends from our results provides further proof of the optimised 
model training process. The spread of the RMSE for the 91 iterations 
for the rice and sugar beet regression models is displayed through box 
plots (Figure A 7 (Appendices)). The plot shows that both have very similar 
means, with the rice models’ RMSEs having more variation than the sugar 
beet models. 

Figure 11. A scatter plot showing actual vs. predicted adulteration percentage for a random RF 
regression model for rice syrup adulteration (A) and sugar beet syrup adulteration (B). The solid 
line represents y = x (perfect agreement between predictions and ground truth), while the top and 
bottom dashed lines represent y = x + 3 and y = x – 3 respectively. 
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5.5.4. Variable Importance 5.5.4. Variable Importance 
The variable importance for each RF model was also calculated to 
determine the Raman shifts responsible for the predictive power of the 
classification and regression models. The results showed general 
agreement between the Raman bands identified as the most important for 
the prediction and the areas in the SORS spectra with visible differences 
between the pure and adulterated honeys. These wavenumbers also 
correspond to the characteristic peaks identified in the individual sugar 
spectra, i.e., maltose, glucose, and sucrose, which are the dominant sugars 
in the sugar syrups. Figure 12 shows an example of the variable 
importance for one of the rice and sugar beet models developed alongside 
their corresponding SORS spectra. For rice adulteration, the Raman bands 
mainly responsible for the predictive power of the classification RF models 
ranged from 860 cm−1 to 890 cm−1 and 920 cm−1 to 950 cm−1, with the 
peaks at 933–937 cm−1 having the highest contribution. For the sugar beet 
models, the highest peaks were in the range from 700 cm−1 to 850 cm−1 

with the wavenumbers at 808, 711, 839, 718, and 715 cm−1 showing the 
highest contribution in order of importance. Figure A 8 (Appendices) shows 
that the most important variables for the combined model were located 
between 700 cm−1 and 950 cm−1, with the highest peak at ~935 cm−1, 
which corresponds to a combination of the important variables for the 
individual models. 

Figure 12. Variable importance for rice and sugar beet classification models. Plot (A) shows the 
variable im-portance for one of the rice models, and (B) shows the SORS spectra for one of the 
pure honeys and its rice-spiked corresponding samples. Plot (C) shows the variable importance for 
one of the sugar beet models, while (D) shows the SORS spectra of one of the pure honeys with its 
sugar beet-adulterated samples. The arrows and boxes point to the Raman shift areas identified as 
significant for the model accuracy. 
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The variables identified as most important for the RF regression models 
were also similar to the classification models (Figure A 9 (Appendices)). The 
most important variables for the rice adulteration model were the Raman 
shifts at 873, 870, and 939 cm−1, in order of importance, while for the 
sugar beet adulteration models, the most important variables in order of 
importance were the Raman shifts at 781, 775, 708, 808, and 839 cm−1. 

6. Discussion 6. Discussion 

6.1. DNA markers and their specificity 6.1. DNA markers and their specificity 
In this study a DNA barcoding approach to authenticate honey was 
evaluated using novel endogenous markers developed for rice and sugar 
beet syrup detection. Typically, endogenous reference genes are required 
to be species-specific, having a stable low copy number with limited intra-
species variability (Chaouachi et al., 2013). They are generally used to 
determine genetically modified organisms (GMOs) occurrence in 
ingredients, as the presence of the modified gene is compared to that 
of the reference gene (Xiujie et al., 2019). However, in the case of highly 
processed food products, such as sugar syrups, low copy number genes 
are less likely to be detected due to the low amount of highly degraded 
DNA present in the sample (Caldwell, 2017). Hence, it makes more sense 
to target genome regions with high copy number, such as chloroplast or 
mitochondrial genes, to increase the chance of detection. Although this 
eliminates the possibility of accurate fraud quantification, in the case of 
honey authentication this is not a necessity, as simple identification of 
adulterant material provides substantial evidence for misconduct (Nehal 
et al., 2021). In our study, appropriate DNA markers were identified from 
literature, or designed in house, targeting nuclear, chloroplast and 
mitochondrial gene regions in rice or sugar beet. 

Most of the markers tested showed flaws, such as no amplification or cross 
amplification with other species. The beet_ant marker was developed by 
Chaouachi et al. (2013) as a reference marker specific to sugar beet (Beta 
vulgaris L). They found the marker amplified in all 39 of the Beta vulgaris L 
varieties tested, with no amplification in closely related species. However, 
in our study the beet_ant marker failed to amplify, despite similar PCR 
conditions (60°C annealing temperature) being used. This could be due 
to a different variety of sugar beet being used, as the “Altissima” variety 
used here was not included in their study, but these results unfortunately 
rendered the beet_ant primer unsuitable as an endogenous sugar beet 
marker. The rice_PLD1 marker was used by Sobrino-Gregorio et al. (2019) 
to detect honey adulteration with rice molasses, they determined that 
it was the most effective primer pair used in their study providing 
quantification at 2-5% when using a standard curve of rice genomic DNA 
(Sobrino-Gregorio et al., 2019). However, we showed that the rice_PLD1 
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marker was also amplified in the corn and sugar beet extracts. Moreover 
these results were confirmed by Xiujie et al. (2019), who found that the 
rice_PLD1 displayed non-specific binding in both maize and potato, further 
proving evidence that it is not a highly specific marker for rice (Xiujie et al., 
2019). 

Of the remaining successful DNA markers, the primers targeting regions of 
nDNA produced results with higher Cq values than those targeting cpDNA 
or mtDNA. Although nuclear markers have been used with success in other 
studies, there are clear advantages to using higher copy number targets. 
For instance, although Truong et al. (2022) were successfully using the 
nuclear corn_PERK2 marker to detect Korean honey adulterated with corn 
syrup, they were only able to reach a detection limit of ≥10%, where here 
a LoD of 1% was achieved with plastid markers – although a different 
syrup type was used (Truong et al., 2022). Indeed, mitochondrial DNA is 
widely used in DNA analysis of food products, as it is believed that the 
plastid structure further reduces the DNA degradation (Sajali et al., 2018). 
Although the chloroplast markers used in this study produced lower Cq 
values (higher detection) than the mitochondrial markers, they had a lower 
specificity to the target plant, as the rice cpDNA markers showed cross 
amplification in the other non-target plant DNA extracts. Most likely this 
is due to the fact that chloroplast genomes are more conserved than 
the mitochondria genomes, possessing a slower rate of evolution and 
sequence variability (F. Li et al., 2022). This can explain why the beet_matK 
chloroplast marker showed low amplification levels in many of the sugar 
syrup extracts, despite appearing species specific when tested on the rice 
and corn plant extracts. 

6.2. DNA extraction from sugar syrups 6.2. DNA extraction from sugar syrups 
One of the challenges of DNA based food authentication tests is the DNA 
extraction, as food products contain a complex matrix of ingredients which 
may have been altered by different types of processing. Honey itself can 
be a difficult matrix to extract DNA from due to the presence of various 
PCR inhibitors such as organic acids, polyphenols, pigments, enzymes and 
wax particles. However, numerous studies have shown success with 
commercial kits aimed for DNA isolation from plants or food products 
(Chiara et al., 2021; Hawkins et al., 2015; Khansaritoreh et al., 2020). DNA 
extraction from sugar syrups have the further issue of being highly 
processed causing high DNA fragmentation and potentially reducing the 
quantity of target DNA in the sample. Furthermore, they may be added to 
honey samples in only small amounts, decreasing even more the residual 
syrup DNA content in the sample. One further challenge is how to assess 
the quality and quantity of DNA extracted from the sample, as there can be 
multiple types of DNA (plant, animal, microbial) present in one sample. This 
means that typical spectrophotometer measurements (such as nanodrop) 

Developing a New Testing Methodology for Honey Authentication

FSA Research and Evidence 42



of the DNA will represent the total DNA of all types, as opposed to just 
the DNA type of interest, hence this can be an inaccurate way of assessing 
the success of the expected plant DNA extraction from a food product In 
this study, a conserved plant marker was used as a means of evaluating 
the DNA extractions in terms of plant DNA yield. The primer targeting 
the trnL P6 loop was shown to perform excellently on highly degraded 
DNA, due to its short amplification product (10-143bp), and had displayed 
100% amplification success in a food dataset including rice, corn and beet, 
making it a highly appropriate marker for this study (Taberlet et al., 2007). 
Moreover, the trnL P6 marker has already been used in studies exploring 
the diversity of plants in honey samples with metabarcoding of the region, 
but has yet to be applied to sugar syrup adulteration detection (Chiara et 
al., 2021; Valentini et al., 2010). 

This study found that the Nucleospin Food kit produced syrup extracts 
with a higher yield of plant DNA compared to the DNeasy Plant Pro kit. 
Similarly, Sobrino-Gregorio et al. (2019) found that the NucleoSpin Food 
kit provided high quality DNA extractions from rice molasses. Although the 
DNA extraction method proved to be successful for all the sugar syrup 
samples, in case of a pure honey sample (H15),three of the 5% rice syrup 
spiked honey samples (H04, H10 and H15) and one commercial honey 
(CH1) there was no amplification with the trnL_P6, suggesting that no plant 
DNA was present in the sample or the extraction itself was not suitable 
for these samples (extraction repeated three times with no success). For 
this reason, these samples were excluded from the analysis, as a more 
optimised DNA extraction may be required to remove PCR inhibitors or 
increase the DNA yield in these samples. 

6.3. DNA marker amplification in sugar syrups 6.3. DNA marker amplification in sugar syrups 
The amplification of the specific DNA markers varied greatly amongst the 
different types of rice syrups, with some samples amplifying the target 
marker weakly (R7). For syrups R1, R2, R4, and R5 the amplification of the 
trnL_P6 plant marker and the target rice marker had similar Cq values, 
amplifying within 3 cycles of each other, suggesting that rice was the main 
component of the syrup. But there were some samples with discrepancies 
between the amplification of the plant marker and the species-specific 
marker, for example in R3 the trnL_P6 amplified with a Cq of 26.42, but the 
rice_rrn26 marker amplified later with a Cq of 34.02. Similar patterns were 
seen with R6 (Cq 27.81 and 33.8) and R7 (Cq 26.78 and 37.32), suggesting 
that the amount of rice target in the sample was much less than the 
amount of total plant DNA. Although this could be due to the rice_rrn26 
primer target sequence becoming degraded in the sample, it could indicate 
that the syrups themselves are not authentic. However, it could also be 
that different rice varieties were used to prepare the syrup, possessing 
sequence differences at the target site, as the specificity test was only 
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performed with one rice line. This inconsistent pattern was also seen with 
the beet syrup extracts which didn’t amplify the target marker, while there 
was undoubtedly plant DNA in the sample due to the positive trnL_P6 
amplification, nonetheless this could not be attributed to sugar beet DNA 
using the qPCR test. 

We were unable to achieve sufficient amplification of the sugar beet 
markers in the sugar beet syrup extracts, even though the markers had 
shown significant amplification in the sugar beet plant control. Similar 
results have been obtained for sugar products derived from sugar beet, 
where Oguchi et al. (2009) suggested that sugar beet DNA had degraded 
during the early stage of sugar processing as specific markers beet01 and 
beet02 (included in this study) were amplified in sugar beet juice, but not in 
subsequent sugar products (Oguchi et al., 2009). However, limited success 
was seen with sugar cane products in a study by Wang et al. (2020), who 
found that DNA was present in low amounts in extracts prepared from 
sugar cane molasses, refined syrup and crystalised sugar samples with the 
PCR product amplified in all but one of the sugar extracts (Wang et al., 
2020). Thus, the positive amplification obtained for the trnL_P6 for all the 
sugar beet syrups tested in this study should be further investigated to 
confirm the success of the extraction protocol, which could be done by 
performing amplicon sequencing of this marker. This method could also be 
used to identify the plant origin of the unknown syrup samples (S1 and S2), 
as neither the rice nor sugar beet marker were strongly amplified in these 
samples. 

6.4. Amplification of rice marker in natural and 6.4. Amplification of rice marker in natural and 
adulterated honey adulterated honey 
The rice_rrn26 marker was tested for amplification in syrup spiked honey 
and was positively amplified at all concentrations tested including the 1% 
spike. The sensitivity of this test is higher than other studies obtained with 
similar methods: 2-5% and ≥10% for rice and corn respectively Truong 
et al., 2022), which is likely due to the specific plastid markers used in 
our work. Low marker amplification was seen in the pure honey, but it 
is reasonable to expect that some rice DNA could be present in small 
amounts in natural honey due to bee foraging or leftover winter bee feed 
making its way into the honey. However, the observed background 
amplification in natural honey samples could also be due to non-specific 
binding of the marker, which could be reduced by exploring a TaqMan 
probe-based approach to amplification to increase marker specificity, if 
appropriate. 

For this reason, we tested 17 different UK honey types to assess what 
background amplification of the rice_rrn26 marker could be expected in 
natural honey. These results were used to create a threshold where the 
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sample is identified as adulterated or natural. This threshold was 
developed using the standardised Cq values obtained from applying a 
single threshold with baseline subtraction, to account for differences in 
instrument response between runs and allowing some comparability 
between the results. When the threshold was applied to the same honey 
types spiked with 5% rice syrup (R1), 100% of samples were classified 
correctly as adulterated, proving the success of the method for this type 
of rice syrup. However, this has not yet been tried with other types of rice 
syrup, as if the syrup itself displayed a low amplification of target DNA it 
may not pass the threshold, as it was the case of R7 where even the pure 
syrup would not be flagged as an adulterant based on the amplification of 
the rice_rrn26 marker. Additionally, the thresholds developed for this study 
were calculated using a small sample set of 17 honeys. So, further work 
may be needed to build up a database of reference honeys to generate 
a greater understanding of the expected background amplification. 
Therefore, the right threshold with appropriate control amplifications is 
vital to prevent natural honey being wrongly classified as adulterated. 
Additionally, the honey types tested in this study were premium honeys 
obtained from UK beekeepers, therefore not an accurate representation of 
the UK honey market – which consists mostly of imported honey blends. 
However, the honeys used in this study were an appropriate 
representation of the many different floral sources present in the UK over 
multiple seasons, therefore a good interpretation of potential non-specific 
amplification of the markers was permitted with the natural plant sources 
in UK honey. The described method would require further development, 
optimisation and validation to reach a standard which could be 
transferrable as a harmonised protocol. In addition, the method should 
next be tested on honeys from different countries, and honeys which 
are more representative of the UK honey market. Furthermore, samples 
should be taken from countries where rice has a major part in the 
agricultural system, to determine if the threshold developed in this study is 
suitable for non-UK honeys. 

6.5. Commercial samples 6.5. Commercial samples 
The proposed qPCR method was tested on commercial samples of UK 
origin purchased from the UK market, the samples were marketed as 
English (CH1, CH4) or Scottish (CH2, CH3) and therefore were suitable for 
the test as developed for UK origin honeys. The DNA extraction method 
was suitable for 3 out of 4 of the selected commercial honey samples, 
with the three successful samples showing good amplification of the plant 
DNA marker. For one sample (CH1) there was no amplification of the plant 
marker used as a positive control, suggesting that the extraction protocol 
was not suitable for this honey. This sample was therefore not analysed 
for amplification of the rice marker. The rice marker was not amplified 
in any of the commercial honey samples, suggesting that no rice DNA 
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was present in these honeys. Applying the method to commercial honey 
samples highlighted the importance of including the trnL P6 plant control 
marker to check the presence of plant DNA in the extract, to verify whether 
the negative amplification of the adulterant marker was truly negative or 
just due to an insufficient DNA extraction. 

6.6. Combination with traditional methods 6.6. Combination with traditional methods 
Typically, for honey authentication, a weight of evidence or evaluative 
reporting approach should be taken, given the known complexities of 
honey analysis (Walker et al., 2022b). This implies that a single atypical 
result should trigger further investigations, with multiple different analyses 
being used to add to the elements of evidence before a final decision about 
product non-compliance is made. For this reason, we used traditional 
sugar composition analysis (HPLC) alongside the DNA results. Of the pure 
honeys, only one sample (H11, heather honey) was flagged as non-
compliant by HPLC for having a sugar (fructose + glucose) content of lower 
than 60 g/100g, which would trigger further analyses. However, this failure 
was marginal at only 0.36 g/100g under the limit when taking the CI into 
account. The DNA results for the rice marker in this sample was negative, 
providing contrasting evidence that the sample was not adulterated with 
rice syrup. In this case, the sample could be subjected to further tests 
to confirm the purity of the honey sample, as the dual analyses were 
not in agreement. The HPLC results for the commercial honey samples 
were compliant with legislation, which was in line with the DNA analysis 
suggesting that the samples were not suspicious of adulteration with rice 
syrup. The rice syrup spiked honey samples were all flagged as 
noncompliant for total fructose and glucose content using HPLC. This was 
further confirmed by the DNA results, showing amplification of the rice 
marker over the natural threshold in UK honey (Figure 8, Table 12). In 
addition, the maltose concentrations for the 10% spiked honey samples 
were elevated compared to the pure honeys, which could also be taken 
into account despite no official limits currently existing for maltose in 
honey. Hence, for the adulterated samples there would be a growing 
weight of evidence suggesting non-compliance by the outcomes from 
these two analyses. Furthermore, the DNA results could be used to 
determine the type of syrup added, which could assist in deciding which 
further tests to carry out, e.g. for presence of the AFGP rice marker. The 
proposed DNA method has great potential to be used alongside traditional 
honey analysis, modern analytical methodologies, and rapid spectroscopic 
screening tests as a highly sensitive method to identify the species origin 
of certain plant-based syrups and help confirm fraudulent practices. 
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6.7. Predictive Modelling for Honey 6.7. Predictive Modelling for Honey 
Adulteration using SORS Adulteration using SORS 
In this proof-of-concept study we successfully employed through-container 
SORS measurements coupled with machine learning predictive modelling 
to achieve non-invasive detection of exogenous sugar adulteration in UK 
honeys. Different levels of adulteration, between 10- 50%, were employed 
to train various machine learning algorithms, including PLSDA, RF and 
XGBoost. The syrups used for adulteration were rice and sugar beet as 
thesesyrups are derived from C3 plants, which are not easily detected with 
existing methods. Thus, it is important to develop methods targeting these 
sources of exogenous sugars 

The results revealed that SORS successfully differentiated honeys from 
plant-based syrups according to their spectral fingerprint. Moreover, the 
majority of honey samples had a similar biochemical profile, mainly 
characterised by the presence of fructose and glucose, with the exception 
of three honey types (heather, ivy, and buckwheat), which were positioned 
away from the main cluster of pure honeys in the PCA plot (Figure 9) This 
difference could be attributed to biochemical differences, as indicated by 
their colour differences and characteristic SORS signals. Indeed, the 14 
honeys in the main cluster were all white—light—amber-coloured honeys, 
while the other 3 honeys (heather, ivy, and buckwheat) ranged between 
amber and a dark amber colour, resulting in higher intensity SORS signals 
as well as strong fluorescence interference (Figure A 1 (Appendices)). 

Classification models built with the RF algorithm consistently 
outperformed alternative algorithms, exhibiting misclassification rates of 
1.10% for pure honey misclassified as adulterated and 2.0% to 2.6% for 
adulterated honey misclassified as pure (hard misclassifications). The total 
misclassification rates ranged from 13.6% to 15.9%. Conversely, XGBoost 
displayed higher misclassification rates, ranging from 7.7% to 9.9% for 
pure honey and an overall misclassification rate of approximately 23.9% 
to 31%. The utilization of XGBoost was motivated by its ability to provide 
probability-based results for each adulteration class (refer to example in 
Table A2). However, its performance was less than that of RF despite both 
being decision tree-based ensemble algorithms. A defining difference was 
the fact that XGBoost employs regularisation to avoid weight overinflation 
to reduce the risk of overfitting. Indeed, the final XGBoost models following 
the training and optimisation process only contained 79 features out of 
the 670 original features. RF in contrast builds hundreds of trees using 
different combinations of training samples and features for each of the 
trees, therefore minimising the risk of overfitting without eliminating 
features. In fact, our efforts to reduce the feature space prior to 
performing RF model training were less successful compared to employing 
the whole feature space as described in Section 5.5.4, possibly indicating 
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the presence of complex interactions between features in the SORS 
spectra. Other studies on honey authenticity have compared the 
performance of several machine learning algorithms, with both RF and 
XGBoost reaching similar performances. XGBoost exhibited 90% accuracy 
in discriminating between monofloral Spanish honeys of different 
botanical origins based on honey physicochemical parameters as 
compared to 83% accuracy for RF (Mateo et al., 2021). In another study 
employing hyperspectral imaging to study adulteration detection in 
Pakistani honeys, RF had superior performance in identifying both the 
botanical origin and adulteration level, reaching a maximum prediction 
accuracy of 99.69%, while XGBoost attained similar levels of performance 
(Shafiee et al., 2016). 

In addition to its increased performance, another advantage of using RF 
was that it provides a variable importance matrix ranking the features in 
order of their impact in the model’s prediction accuracy. The wavelengths 
of highest importance for the different rice syrup models ranged between 
860 to 890 cm-1 and 920 to 950 cm-1. These wavelengths correspond 
to two peaks characteristic of maltose which were also present in rice-
syrup showing that the algorithm correctly identified maltose as the sugar 
responsible for differentiating between natural honey and honey 
adulterated with rice syrup. Hu et al. (2022) have also identified two Raman 
peaks at 865 and 915 cm-1 among the most important features for 
identification of maltose syrup adulteration of native Suichang Chinese 
honey which indicate the presence of C-H and C-H and C-OH bond bending 
vibrations. The regression models for rice syrup adulteration also showed 
that the wavenumbers around 865 cm−1 contributed more than 50% to the 
prediction of adulteration level (Figure A 9 (Appendices)) 

The bands responsible for the prediction accuracy of the RF sugar beet 
models, ranged between 700 to 850 cm-1. The band around 706 cm-1 has 
been previously associated with C-O stretching and C-C-C-O and O-C-O 
bending vibrations of glucose (Aykas et al., 2020). The area around 830 
cm-1 also coincided with a dominant peak in the sucrose SORS spectrum 
and is in agreement with previous observations by Mosca et al. (2023). 
The SORS results were further validated by HPLC analysis which revealed 
distinctive sugar profiles for rice and sugar beet syrups, with the rice syrup 
predominantly consisting of glucose and maltose, while the sugar beet 
syrup predominantly contained sucrose, glucose and fructose. 

RF was further used to develop a classification model with the aim of 
discerning the type of sugar syrup used for adulteration, as well as 
predicting the level of adulteration. This model also exhibited high success 
rate with only 1.10% of pure samples misclassified as adulterated and 
3.64% of adulterated samples misclassified as pure. In addition, it had only 
2.2% to 4.9% misclassification in the type of syrup. The fact that this model 
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was able to also identify the type of adulteration successfully was of high 
importance, as it showcases that SORS accurately captures differences in 
chemical composition between different syrup types and honeys. Figure A 
9 (Appendices) shows the most important variables enabling the predictive 
models to detect the type and percentage of adulteration. The bands 
with the highest importance range between 700 and 950 cm-1, which 
encompasses the important variables previously identified for the 
individual rice and sugar beet classification models. In addition, a band 
around 1127 cm−1 has previously been suggested to be arising from a 
combination of stretching vibration of C-O bond (major) and vibration of 
C-N bond of protein and amino acids (minor), while the band around 1264 
cm−1 has been associated with the vibration of C(6)-OH and C(1)-OH bonds 
(S. Li et al., 2012). 

While previous studies have shown promising results of employing Raman 
spectroscopy to identify honey adulteration with sugar syrups, they are 
not able to specify the type of sugar syrup used for adulteration (Mosca 
et al., 2023) and in some cases they show poor performance compared 
to individual models (S. Li et al., 2012). In contrast, the SORS methodology 
exhibited high discriminatory capacity with potential applications in testing 
unknown honey samples in non-controlled commercial setting where the 
type of adulterant would be unknown. 

Similar to the results observed for classification purposes, the regression 
models employing RF regression methods demonstrated very low RMSE 
values, around 3.7, for both rice and sugar beet syrups, with SDs of 1.67 
and 1.09, respectively. These results demonstrate the efficacy of these 
models in predicting adulteration levels and adding a valuable quantitative 
dimension to the study. 

Finally, as shown in the present study the majority of pure honey types 
in the UK had a similar metabolic fingerprint which allowed us to group 
them together in a single model. Additionally, individual models could be 
constructed in the future to characterise more diverse types of honey with 
unique fingerprints, such as heather, ivy and buckwheat. 

This study emphasises the potential of SORS and machine learning as 
a cost-effective and rapid method for honey authentication. Deployment 
of SORS in the field and through-container analysis offers practical 
applications for adulteration detection and quality monitoring in the honey 
supply chain. Future research is recommended to refine models, reduce 
misclassifications, and broaden the study to encompass a diverse range of 
commercial honey types. 

Furthermore, the two orthogonal methodologies proposed in the study 
can be used in conjunction in the future, with SORS employed as rapid 
screening method at various stages in the supply chain and suspicious 
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samples can be further tested with the PCR-based DNA barcoding method 
described earlier. In addition, SORS exhibited quantitative potential 
showing that the proposed new methodology could be used both for 
qualitative analysis to detect the presence/absence of adulterant but also 
to quantify the percentage of adulteration. This approach could be further 
extended to imported honeys, which constitute the majority of honey 
available in the UK market (García, 2018), by constructing databases with 
commercially relevant samples. 

In conclusion, the results of this study demonstrate the potential of SORS 
and DNA barcoding methods to be applied for the authentication of UK 
honey samples and adulteration detection. The combination of the above 
techniques could result in a highly accurate and fast method for honey 
quality control deployable in field. This will support the local beekeeping 
sector and provide importers and policymakers with an important tool 
for tackling fraud in the honey industry. Furthermore, it could alleviate 
consumer concerns around the purity and authenticity of honey products 
on the market and provide assurance of honey quality and purity. 
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