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FSA Research and Evidence

Honey is a valuable and nutritious food product, and its popularity is
increasing globally driven by consumers demand for a healthier and more
sustainable diet. However, honey is at risk of fraudulent practices such as
the addition of exogenous sugars in the form of cheaper plant-based
syrups including corn, rice, and sugar beet syrup. Honey authentication is
of the utmost importance, but existing methods are not sufficient to
detect all types of sugar syrups used for adulteration and at present there
is no single method for honey authenticity testing.

The aim of this project was to investigate a) the suitability of Spatially
offset Raman Spectroscopy (SORS), a non-invasive technique used to
acquire measurements through packaging, for detecting the type and
percentage of exogenous sugar adulteration in honey and b) to develop
DNA markers (DNA barcoding) to identify the presence of DNA from plant
sources such as rice and sugar beet which are used for making sugar
syrups used for honey adulteration.

1. Lay Summary

Honey is a valuable and nutritious food product, and its popularity is
increasing globally driven by consumers demand for a healthier and more
sustainable diet. However, honey is at risk of fraudulent practices such
as the addition of exogenous sugars in the form of cheaper plant-based
syrups including corn, rice, and sugar beet syrup. Honey authentication is
of the utmost importance, but existing methods are not sufficient to detect
all types of sugar syrups used for adulteration and at present there is no
single method for honey authenticity testing.

The aim of this project was to investigate a) the suitability of Spatially offset
Raman Spectroscopy (SORS), a non-invasive technique used to acquire
measurements through packaging, for detecting the type and percentage
of exogenous sugar adulteration in honey and b) to develop DNA markers
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(DNA barcoding) to identify the presence of DNA from plant sources such
as rice and sugar beet which are used for making sugar syrups used for
honey adulteration.

For the purposes of this study, we collected 17 different types of pure
honey from the UK and different levels of adulteration were simulated with
a range of different plant syrups.

For the DNA barcoding method, we designed specific DNA markers for
detecting the presence of sugar syrups. The results showed that
adulterated honey was clearly separated from natural honey, even at 1%
adulteration level. Moreover, the test was successful for multiple syrup
types and was effective on honeys of different compositions.

For the SORS method, we collected spectra from the pure and adulterated
honey samples (using rice and sugar beet syrup) and constructed
predictive models using different machine learning algorithms (a form of
artificial Intelligence), to identify adulterated samples and predict the level
and type of adulteration.

The results of this study demonstrate the potential of SORS and DNA
barcoding methods to be applied for the authentication of UK honey
samples and adulteration detection. The combination of the above
techniques could result in a highly accurate and fast method for honey
quality control deployable in field. This will support the local beekeeping
sector and provide importers and policymakers with an important tool
for tackling fraud in the honey industry. Furthermore, it could alleviate
consumer concerns around the purity and authenticity of honey products
on the market.

2. Executive Summary

Honey is a valuable and nutritious food product, and its popularity is
increasing globally driven by consumers demand for a healthier and more
sustainable diet. The global honey market is currently worth over USD
8.45 billion which puts honey at risk of fraudulent practices such as the
addition of exogenous sugars in the form of cheaper plant-based syrups
including rice and sugar beet syrup. Honey authentication is of the utmost
importance, but current methods are faced with challenges due to the
large variation in natural honey composition, or the incapability to detect
certain types of plant syrups to confirm the adulterant used. Molecular
methods such as DNA barcoding have shown great promise in identifying
plant DNA sources in honey and could be applied to detect plant-based
sugars used as adulterants. Furthermore, spectroscopic techniques such
as Raman Spectroscopy coupled with machine learning algorithms have
shown potential for characterising the metabolic fingerprint of honey and
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identifying adulteration. Among them Spatially offset Raman Spectroscopy
(SORS) is a truly non-invasive technique employable in field and through
container.

The aim of this project was to investigate a) the suitability of SORS and
machine learning methods to develop a fast, accurate, and cost-effective
method for detecting the type and percentage of exogenous sugar
adulteration in honey and b) to develop a new DNA barcoding method for
honey adulteration detection using gPCR with the aim to discover specific
DNA markers for common adulterants such as rice and sugar beet syrup.

For the purposes of this study, we collected 17 different types of pure
honey from the UK and different levels of adulteration were simulated
(1-30% for the gPCR method and 10-50% for the SORS method) with a
range of different plant syrups.

For the gPCR method we designed a series of specific DNA markers for
detecting the presence of sugar syrups. The results showed that
adulterated honey was clearly separated from natural honey, even at 1%
adulteration level. Moreover, the test was successful for multiple syrup
types and was effective on honeys of different compositions.

For the SORS method, we collected spectra from the pure and adulterated
honey samples (using rice and sugar beet syrup) and constructed
classification and regression models with different machine learning
algorithms, to identify adulterated samples and predict the level of
adulteration as well as the type of adulterant sugar syrup. Random Forest
(RF) was consistently the best performing algorithm for both tasks. The
RF classification model clearly identified the type of adulterant used and
also successfully distinguished between pure and adulterated honey with
only 1.1% of the pure honey samples misclassified as adulterated and
3.64% of adulterated samples misclassified as pure honey. Furthermore,
RF regression models were also highly efficient at correctly predicting the
percentage of adulteration with rice and sugar beet syrup.

The results of this study demonstrate the potential of SORS and DNA
barcoding methods to be applied for the authentication of UK honey
samples and adulteration detection. The two methods could be used
complementary with SORS applied as a rapid non-invasive screening
method throughout the honey supply chain, while DNA barcoding could be
used as a sensitive and robust method to confirm syrup species origin.

The results of these projects have been published open access and can be
accessed as follows:
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Shehata, M., Dodd, S., Mosca, S., Matousek, P., Parmar, B., Kevei, Z., &
Anastasiadi, M. (2024). Application of Spatial Offset Raman Spectroscopy
(SORS) and Machine Learning for Sugar Syrup Adulteration Detection in UK
Honey. Foods, 13(15), Article 15. https://doi.org/10.3390/foods13152425
[Under a Creative Commons license]

Dodd, S., Kevei, Z., Karimi, Z.,, Parmar, B., Franklin, D., Koidis, A., &
Anastasiadi, M. (2025). Detection of sugar syrup adulteration in UK honey
using DNA barcoding. Food Control, 167, 110772. https://doi.org/10.1016/
j.foodcont.2024.110772 [Under a Creative Commons license]

These published research articles encompass a wider scope, so some
sections of the publications have been omitted in this report as follows:

+ Methodology, results and discussion relating to DNA
markers for corn and corn syrup.

+ Methodology, results and discussion relating to cane syrup
adulteration in heather honey.

Keywords: honey, authentication, syrup, adulteration, DNA marker, qPCR,
SORS, random forest

3. Introduction

Honey is a sweet substance produced naturally by honeybees and is a
popular food product consumed globally for its taste, nutritional value
and perceived health benefits (Soares, Pinto, et al., 2017). UK domestic
production is far from self-sufficient, and recently the UK was listed as
one of the top four countries worldwide importing honey (Garcia, 2018),
and the second-largest importer in Europe with 51,912 tonnes of honey
imported in 2022 valued at €122 million (CBI, 2024). However, total honey
imports in Europe are expected to show little growth or even a negative
trend in the coming years mainly because of consumer concerns around
the purity and authenticity of honey from various cheap suppliers (CBI,
2024). These concerns were further exacerbated by the recent European
Commission’s Joint Research Centre (JRC) report published in 2023 which
identified that 46% of the 147 samples tested were suspicious to be
adulterated (Zdiniakova et al., 2023). However, the current analytical
methods are not yet developed enough to provide definitive answers to
the question of adulteration, therefore follow-up investigations of
suspicious samples are essential, including collection of traceability
information.

Recently, a review was commissioned by the UK government where the
need for research into new standard analytical tests for honey
authentication was highlighted, partly due to the high-level interpretation
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needed in existing approaches (Walker et al., 2022a, 2022b). The same
report identified some of the possible malpractices associated with honey
including direct adulteration with sugar syrups and mislabelling of origin.

Honey is mainly composed of sugars (mostly fructose, glucose, maltose
and sucrose, amongst others) and water. Sugar adulteration of honey
involves diluting pure honey with cheaper sugar syrups, which not only
results in inferior taste but the nutritional properties and chemical
composition is also altered (Geana & Ciucure, 2020). Traditional
methodology for sugar adulteration detection in honey relies on assessing
the sugar composition using methods such as high-performance liquid
chromatography (HPLC). The honey legislation for England (Honey
(England) Regulations, 2015) and the Codex Standard 12-1981 for honey
(Codex Alimentarius, 2022) legislate the minimum quantity of fructose and
glucose (no less than 60 g/100g) and maximum levels of sucrose (no more
than 5 g/100g) in honey, with deviations allowed for certain honey types
such as honeydew, lavender, borage and Citrus spp. amongst others due
to the natural differences in sugar composition in these nectar sources.
However, as some sugar syrups contain a similar sugar composition to
the nectar that bees forage on, more advanced techniques are needed to
detect sugar adulteration in honey.

Most of the modern present methodology for exogenous sugar detection
in honey are based on stable carbon isotope ratio analysis (SCIRA), which
relies on identifying the presence of adulterant C4 plants by assessing
the 13C/12C ratio (White, 1992). This is based on the information that
honey should be almost entirely derived from plants which use the C3
(Calvin cycle) photosynthetic pathway, whereas plants like corn and sugar
cane possess the C4 (Hatch-Slack) pathway (Tosun, 2013). C4 plants have
a higher 13C value which becomes apparent if honeys are adulterated
with an abundance of corn or cane syrup (Tosun, 2013). However, for
syrups derived from C3 plants such as rice and sugar beet, SCIRA is not
suitable, so alternative methods are required. Additionally, the 2023 EU JRC
technical report indicated that SCIRA methods (AOAC method 991.41) were
not effective in detecting honeys suspicious of non-compliance, suggesting
that sugar syrups from corn or sugar cane are no longer being used to
adulterate honey for the European consumption (Zdiniakova et al., 2023).
An additional issue with this method is the presence of false positives
and differences between testing labs reported by beekeepers (Kilpinen &
Vejsnaes, 2021), which ultimately means samples require additional and
more costly analysis to prove authenticity, hence it is evident that more
robust and repeatable standard tests are needed.

Recently spectroscopic methods including infrared (IR), Raman,
fluorescence spectroscopy and nuclear magnetic resonance (NMR)
spectroscopy have been proposed as alternative methods for rapid
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determination of sugar adulteration of honey. These methods rely on
mapping the spectral fingerprint of pure and adulterated honeys and apply
multivariate data analysis techniques to build predictive classification and
regression models able to identify adulterated samples. Notably TH-NMR
was one of the methods employed during honey testing in the recent
2023 EU JRC technical report. Raman spectroscopy has also been used
as a rapid, non-destructive method to detect sugar adulterants in honey,
such as fructose, glucose, malt must, etc (Oroian et al., 2018). Furthermore,
Spatially Offset Raman Spectroscopy (SORS) is a truly non-invasive
technique which has already shown promising results for honey
authentication in our previous STFC Food Network+ scoping project [2019].
The technique has previously been applied for the detection of counterfeit
alcohol (Ellis et al., 2017) and butter adulteration (Lohumi et al., 2018)
through packaging and has been commercialised and deployed in over 75
airports worldwide to detect liquid explosives in unopened bottles.

Despite their potential spectroscopic methods are likely to be affected
by the large variation in the characteristics of natural honey, causing
unreliable or misinterpreted results (Soares, Amaral, et al., 2017).
Therefore, their success relies greatly on the existence of extensive and
representative databases and employing robust data analysis techniques
to build predictive models able to incorporate the natural variability in
honey.

Another emerging technique for honey authenticity is DNA based methods
which have been widely used in food authentication, to identify the
presence of plant species in various food products or raw ingredients
(Madesis et al., 2014). Honey contains multiple sources of nucleic acids
including plant DNA from floral forage, microbial DNA, and animal DNA
derived from the honeybees (Wirta et al., 2021). Although DNA based
methodology has predominantly focused on the botanical authentication
of honey (Laube et al., 2010; Lopes et al., 2023; McDonald et al., 2018;
Soares et al., 2018; Wu et al., 2017), it has also been shown that residual
plant DNA from sugar syrup addition can be successfully identified in
certain honey samples mixed with rice and corn molasses (Sobrino-
Gregorio et al.,, 2019; Truong et al., 2022). Nevertheless, this technique
has not yet been tested on a wider range of syrups and honey types or
developed for other common sugar syrup adulterants. This is the vital next
step to assess the reliability of the method in potential real-life situations,
where different syrups could be used on any type of honey.

This project aimed to provide a robust methodology for plant-based syrup
adulteration detection in honey through a combination of two orthogonal
methods; a) SORS coupled with machine learning as a rapid non-invasive
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screening technique and b) the application of DNA barcoding to build a
robust method for sugar adulteration detection in honey, focusing on rice
and sugar beet syrup detection.

4. Material and methods

4.1. Sample collection and preparation
4.1.1. Figures, charts and graphs

A total of 17 honey samples were collected from bee farmers around the
UK, representative of different seasons and floral sources. Additionally, 4
honey samples of UK origin were purchased commercially (CH1 - CH4)
from supermarkets and online retailers. Table 1 includes the types of
honey, and the type of flora predominantly available to bees in the area
surrounding the apiaries. When a single flora type has been named for a
type of honey, this is not necessary an indication the honey is monofloral
and it is information obtained from the beekeepers. Samples were stored
at room temperature and away from light.

Table 1. Honey sample information

Sample # Honey description Bee forage* Season
HO1 woodland Woodland trees and nearby flowers, including Summer
lime (Tilia), horse chestnut (Aesculus
hippocastanum) and sweet chestnut (Castanea
sativa).
HO02 sycamore Predominantly Acer pseudoplatanus with a bit of Spring
hawthorn (Crataegus monogyna) and bean
(Fabaceae)
HO3 phacelia Phacelia tanacetifolia Spring
HO4 ivy Hedera helix Autumn
HO5 himalyan balsam Impatiens glandulifera Autumn
HO6 spring set Mixture of farmed and wild spring flowers Spring
HO7 borage Borago officinalis Summer
HO8 buckwheat Fagopyrum esculentum Autumn
HO9 meadowfoam Limnanthes alba Summer
H10 sea lavender Limonium vulgare Summer
H11 heather Calluna vulgaris Autumn
H12 echium Echium plantagineum Summer
H13 field and forest Blend of moor, woodland and wild pasture Mixed
flowers.
H14 hedgerow Mixture of flowers from hedgerows, meadows, Mixed
and farmland.
H15 english blossom Blend of blossoms from spring and summer Mixed
H16 apple blossom Malus domestica Spring
H17 wildflower Mixture of summer wildflowers Summer
CH1 wildflower Mixture of summer wildflowers and bramble Summer
CH2 heather Heather from Scottish hills and countryside Autumn
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Sample # Honey description Bee forage* Season
CH3 heather Heather from Scottish moors Autumn
CH4 borage Borago officinalis Spring

*As described by honey producer or interpreted from honey label.

4.1.2. Syrup samples

Sugar syrups derived from rice or sugar beet were purchased from online
retailers or grocery stores, two of the syrups (51, S2) did not state the plant
origin so were treated as unknown samples (Table 2). Control samples
were included consisting of rice syrup (R5) prepared in house as described
in section 5.1.3, granulated sugar (B3), and syrup prepared from B3 with
water (50/50 w/v) (B4). These samples were also stored at room
temperature and away from light.

Table 2. Syrup sample information

Sample # Description Plant species Production Country
R1 rice syrup rice Spain

R2 rice syrup rice Spain

R3 rice syrup rice Korea

R4 rice syrup rice Korea

R5 rice syrup rice NK*

R6 rice syrup rice Germany
R7 rice syrup rice Non-EU

R8 rice syrup rice EU/non-EU
S1 sugar syrup NK* Korea

S2 sugar syrup NK* Korea

B1 sugar beet molasses sugar beet Germany
B2 bee feed syrup sugar beet Germany
B3 granulated sugar sugar beet UK

B4 sugar syrup sugar beet UK

B5 light syrup sugar beet Sweden
B6 golden syrup sugar beet UK

B7 dark syrup sugar beet and cane Sweden

* NK = Not Known

A subsample of each of the 17 honey samples was spiked with sugar syrup
at 1%, 5%, 10% and 30% (w/w) prior to DNA extraction.
4.1.3. Rice syrup preparation

To prepare sample R5, 450g of long grain brown rice (Sainsbury's, UK) was
washed and steamed in a rice cooker (Breville ITP181 1.8L, UK). 1L of water
was added with 150g of barley malt powder (Wang Korea, South Korea),
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mixed and left to ferment for 6 hours at 60°C. The mixture was strained
using a muslin cloth and the liquid collected was boiled for 30 minutes to
produce the syrup.

4 .1.4. Plant material

Rice grains (Oryza sativa X265), sugar beet seeds (Beta vulgaris var.
Altissima) and corn kernels (Zea mays NK Falkone) were sterilised in 5%
sodium hypochlorite: water (v/v) (Merck, Germany) and washed with
ddH,O before leaving to germinate. Fresh leaf material was then taken
from young plantlets for DNA extraction.

4.1.5. Chemicals

Methanol (LC-MS grade) and acetonitrile ( = 99.9%) were obtained from
Fisher Scientific, UK. D-(-)-Fructose (> 99%), D-(+)-Glucose (> 99.5%),
Sucrose (= 99.5%) and Maltose (> 95%) from sourced from Sigma Aldrich,
UK.

4.2. DNA extraction
4.2.1. DNA extraction from plant material

Plant material was snap-frozen in liquid nitrogen and ground with a 3
mm tungsten carbide (TC, Qiagen, Germany) bead using the Star-Beater
(VWR, UK) at 30 mHz for 2 minutes. The E.Z.N.A Plant DNA kit (Omega Bio-
Tek, USA) was then used for the extraction following the manufacturer’s
protocol. The eluted samples were stored at -20 °C, and diluted 10X in
ultrapure water before testing.

4.2.2. DNA extraction from honey/syrup

10 g pure honey, syrup, or spiked honey was diluted to 50 mL ultrapure
water and incubated at 65 °C for 30 minutes until completely dissolved.
After centrifugation at 4500 x g for 15 minutes the pellet was processed
with two different extraction kit methods.

For the Nucleospin Food kit (Macherery-Nagal, Germany), the pellet was
suspended in 200 pL ultrapure water, and ground with a 3 mm TC bead
in the Star-Beater (VWR, UK) at 25 mHz for 2 minutes. After the addition
of 400 pL of CF lysis buffer and 10 pL of proteinase K (20 mg/mL, QIAGEN,
Germany) the samples were incubated for 30 minutes at 65 °C, before
adding 10uL of RNase A (10 mg/mL, ThermoFisher Scientific, UK). After this
the manufacturer’s protocol was followed for the DNA extraction.
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For the DNeasy Plant Pro kit (QIAGEN, Germany), the pellet was suspended
in 500 pL CD1 buffer and ground with a 3 mm TC bead in the Star-Beater
(VWR, UK) at 25 mHz for 2 minutes. The samples were incubated at 65 °C
for 30 minutes after the addition of 10 pL proteinase K (20 mg/mL, QIAGEN,
Germany). After this the manufacturer’s protocol was followed.

The DNA was eluted in 50 pL elution buffer with both methods, passed
twice through the respective kit column and stored at -20 °C.

4.3. DNA markers

Investigated DNA sequences were obtained from the GenBank database
(Benson et al., 2005), and candidate gene regions were identified for rice
(Oryza sativa) and sugar beet (Beta vulgaris subsp. vulgaris). Primers were
designed to be species specific and tested firstly in silico by using Primer-
BLAST (Ye et al., 2012), and then by using PCR (Section 5.4.1) to check for
amplification or cross amplification in the rice, corn and sugar beet plant
extracts. All primer sequences were developed during this study except
where the reference is provided (Table 3). The conserved plant marker
targeting the trnL P6 loop was used as a general positive control (Taberlet
et al., 2007).

Table 3. Primer information

Target Target gene Name Primer Sequences 5'-3' (F; R*) Amplicon
species length
(bp)
plant tRNA-Leu (trnL) P6 trnL_P6 GGGCAATCCTGAGCCAA; 10-144
loop (Taberlet et CCATTGAGTCTCTGCACCTATC
al., 2007)
rice phospholipase D1 rice_PLD1 TGGTGAGCGTTTTGCAGTCT; 68
(PLD1) (JRC, 2006) CTGATCCACTAGCAGGAGGTCC
rice cytosine rice_Zmet3 CCCGGCCCTAAGGAACATAG; 210
methyltransferase CAGCAACCAAAGCACCTGAC
(Zmet3)
rice region of rice_cp TTACACCGCACACCCCTG; 99
chloroplast AGACCCGTTCCTTTTGGTATC
rice 26S rRNA rice_rrn26 TTTGGCGACCAGCAAACTCT; 54
TCATCCCTTGCTTCAAAACTAC
sugar adenylate beet_ant CAGTATATTTTAGTCAATTCCAAG; 135
beet transporter (ant) ACATTTTCTGTCTGGTCTACTACC
(Chaouachi et al.,
2013)
sugar unknown region beet01 GCCCCCAAAAACCCTTCA; 116
beet (Oguchi et al., GGGCAATTTGGTAGGCTTCTT
2009)
sugar unknown region beet02 ATCCCTGCAGCCATCAGTGA; 121
beet (Oguchi et al., ACCAGTAAGCCACTCAACAGTCAA
2009)
sugar maturase K (matK) beet_matk CCCAGACCGACTTACTAACG; 76
beet ATTCCTCTGGTTGGATCCTTG
sugar open reading beet_orf409 GATCTTCCCAACCCATATGGA; 56
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Target Target gene Name Primer Sequences 5'-3' (F; R¥) Amplicon
species length

(bp)
beet frame 409 (orf409) GGCGAATAAAGTCCGACAGTA

*forward sequence; reverse sequence

4.4. PCR and gPCR

4.4.1. PCR protocol

The PCR was performed in a 10 pL reaction using 10X DreamTaq Buffer
(ThermokFisher Scientific, UK), consisting of 0.2 mM dNTPs, 2 mM MgCl,,
1.25 U Dream Taq DNA polymerase, 0.5 pM of forward and reverse primer
(Life Technologies Ltd, UK) and 1 uL DNA extract or water for negative
control. The thermocycler (PTC-200, BioRad) conditions are shown in Table
4.

The products were run on a 2 % agarose gel at 100 V for 45 minutes and
stained with SafeView dye (NBS Biologicals Ltd., UK) with the GeneRuler
DNA ladder (ThermoFisher Scientific, UK) for size comparison.

Table 4. Thermocycler conditions for PCR

PCR step Temperature (°C) Time Cycles
initial denaturation 95 3 min 1
denaturation 95 30 secs 35
annealing 65 30 secs 35
extension 72 30 secs 35
final extension 72 5 mins 1

4.4.2. qPCR protocol

For gPCR a 10 L final reaction volume was generated using SsoAdvanced
Universal SYBR Green Supermix (BioRad, UK) containing antibody-
mediated hot-start Sso7d fusion polymerase, dNTPs, MgCl, and SYBR
Green | dye, with 0.5 pM forward and reverse primers and 1 pL DNA
extract or water. The reaction was run on the CFX96 Touch Real-Time PCR
Detection System (Bio-Rad, UK) using the conditions in Table 5.

Table 5. Thermocycler conditions for qPCR

gPCR conditions Temperature (°C) Time Cycles
initial denaturing 95 3 min 1
denaturing 95 15 secs 40
annealing/extension 65 30 secs 40
melt curve 65 - 95 at 0.5 increments
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The results were assessed either by using the raw Cq value calculated by
CFX (CFX Maestro Version 2.3) applying a single threshold with baseline
subtracted curve fit, or by scaling the data to set the amplification for the
marker of interest at 100 % for the target plant. This was done by the
following calculation:

Scaled Ampli fication (%) = (N o. cycles — Cq(sample))
100

< (No. cycles — C )

q(control) )

Where:

No. cycles is the number of cycles the qPCR ran for.

Cy(sample) 1S the Cq value obtained for the sample for the marker of
interest.
Cy(controly 1S the Cq value obtained for the target plant control for the

marker of interest.

For all results the average Cq and standard deviation (SD) was calculated
from three replicate qPCR reactions. PCR negative controls were included
in all tests, for the trnL_P6 amplification was sometimes seen above 35
cycles due to the high sensitivity of the marker to all plant DNA, this is
respectively shown in the results tables.

4.5. SORS measurements and Multivariate
Analysis
4.5.1. Sample Preparation and Spectra Acquisition

The samples selected for SORS consisted of the same pure honeys as Table
1, and selected sugar syrups from Table 2 including R1-4, R6-8, B1 and
B5-7. The excluded samples included the control samples (homemade rice
syrup R5, granulated sugar B3, homemade syrup prepared from B3) and
the bee feed syrup B2, as it was assumed that these would not represent
syrups which could be used to adulterate honey. The pure honey samples
were liquified at 45 °C for 60 minutes and stirred until homogenous. A
subsample of each honey sample was spiked with rice syrup 1 and beet
syrup 5 at 10%, 20%, 30% and 50% adulteration level to a total mass of
10 g (w/w). These syrups were selected based on colour and consistency
similarity with the majority of the pure honeys. All the samples were
further incubated at 45 °C for 60 min in a water bath, with constant
agitation to obtain a homogenous mixture. All samples were taken out
of the water bath and left to reach room temperature before being
transferred to 7 mL Pico Glass vials (Perker EImin, Buckinghamshire) for
SORS measurements. Apart from the honey and syrup samples, a set
of individual sugar standards were prepared consisting of 50 % aqueous
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solutions (w/v) of fructose, glucose, sucrose and maltose. Two HPLC water
samples were also used as “blanks”. The SORS measurements took place
at The Central Laser Facility (CLF, Rutherford Appleton Laboratory, UK)
using a custom-made set up optimised to performed Raman measurement
in a conventional point-like spatial offset Raman spectroscopy (SORS)
described in detail (Mosca et al., 2019, 2021). Briefly, the excitation source
consisted of an 830 nm wavelength with maximum power of 400 mW
output power focused on ~0.5 mm diameter size spot on the sample
surface. The Raman signal was collected from a spot with an~1.5 mm
diameter at different spatial displacement (i.e. ‘so’) from the excitation
location (so=0 mm; so=4 mm). For each sample, three different locations
were measured as shown in Figure A 3 (Appendices). Each SORS spectra
were acquired using 35 mW laser power, an acquisition time of 1 s and 10
accumulations (i.e., total time 100 s) for both zero and 4 mm spatial offset.

4.5.2. Data Pretreatment

All data analysis was conducted using the R environment (R version 4.3.2).
The raw dataset consisted of a 2-dimentional numerical matrix with the
rows corresponding to the samples and the columns corresponding to the
Raman shift (cm™1) between 111.92 and 1965.3 cm™!. The dataset consisted
of 179 samples (pure honeys = 17, spiked honeys = 136, rice syrups =
7, sugar beet syrups = 4, individual sugar solutions = 4 at 3 different
concentrations (50, 25, 12.5%), blank (water) = 2, with all measurements
taken in triplicate plus 3 samples repeated at different timepoints).

The raw data were subjected to quality control and pretreatment before
proceeding with the construction of predictive models using machine
learning algorithms. To begin with, the wavelengths at the peripheries
were cut so that the spectral range was restricted from 585 cm™! to 1550
cm! as this contained the structural information-rich areas of the spectra.

Baseline correction was subsequently performed using a modified
polynomial fitting method from the R package baseline (version 1.3-4)
(Chaouachi et al.,, 2013). This method subtracts the fluorescence signal
from the fluorophores within the honey or syrup matrix which suppresses
the Raman signal.

The matrix of the baseline-corrected spectra was smoothed using the
Savitzky Golay method for smoothing (differentiation order = 0, polynomial
order = 7, and window size = 31) and differentiation included in the R
library prospectr (version 0.2.6). This method reduces a signal high-
frequency noise by smoothing and reduces the low-frequency signal using
differentiation (Gallagher, n.d.).
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Following baseline correction, the spectra were normalised using the
standard normal variate (SNV) method from the “prospectr” package. This
method normalises each row of the smoothed matrix (corresponding to
a single SORS measurement) by subtracting each row by its mean and
dividing it by its standard deviation. It effectively eliminates the constant
offset and multiplicative differences between spectra.

Finally, the mean of the three technical replicates was taken for each
sample was then calculated. Figure 1 shows the average SORS spectra for
the 17 pure honeys before and after preprocessing.

SORS Raw Data

60,000

50,000 +

40,000

30,000 |

20,000

10,000 —

T T T T T T T T T T T T T T T T T
1 21 31 41 511 611 A 811 MM 1011 111 1211 1311 1411 1511 1611 171 1811 1911

wavenumber

SORS Pre-processed Data

Relative Counts

T
600

wavenumber

Figure 1. SORS spectra corresponding to the 17 pure honeys collected in Year 2 before (A) and
after (B) preprocessing.
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4.5.3. Exploratory Data Analysis (EDA) using Principal
Component Analysis (PCA)

PCA is an unsupervised multivariate analysis which performs data
reduction and denoising and can be used to visualise the natural clustering
of the samples for exploratory data analysis purposes and quality control.
Based on the PCA results, a total of 14 honey types which showed similar
spectral fingerprint were selected for developing machine learning
classification and regression models.

4.5.4. Predictive Modelling using Machine Learning

A range of different classification and regression models was constructed
based on the SORS spectra with the aim of selecting the best performing
algorithm and assessing the potential of detecting the type and level of
adulteration in UK honeys. The process followed was divided in the three
stages described below and also displayed in Figure 2:

Stage 1: creating separate models for
rice and sugar beet adulteration
detection.

Stage 2: building a combined
classification model for identifying both
the type of adulterant (rice or sugar beet
syrup) and the level of adulteration.

Stage 3: building regression models for
rice syrup and sugar beet syrup
adulteration for quantative predictions.

Figure 2. Description of the three stages followed for training classification and regression models.

a) The first stage focused on creating separate models for rice and sugar
beet adulteration detection. The process for selecting the test set is
displayed in Figure 3. The dataset for developing the rice syrup
adulteration model consisted of the SORS spectra for the 14 pure honey
and the respective rice-spiked honeys at 10%, 20%, 30%, 50% adulteration
level (70 samples in total). Similarly, the dataset for sugar beet adulteration
model consisted of the SORS spectra for the 14 pure honeys and the
respective sugar beet-spiked honeys (70 samples in total). Next, each
dataset was separated into training and test set for the purpose of
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developing a classification model and testing its performance with an
independent test set. For each syrup group the training set was formed
of 12 randomly selected pure honeys and their corresponding spiked
samples (with rice or sugar beet syrup), while the test set consisted of the
remaining two pure honeys and their corresponding spiked samples. A
total of 91 possible combinations for separating the data into training and
test set were tried and 91 models were subsequently built -per algorithm
and adulteration type- in order to assess how small changes in the training
and test data affect model performance.

14 pure honeys + 112 rice

and sugar beet adulterated
samples

14 pure honeys + 56
sugar beet-
adulterated = 70

14 pure honeys + 56
rice-adulterated = 70

Training Set: Test Set:

Training Set: Test Set:

12 Honeys + 2 Honeys +
adulterated adulterated

12 Honeys + 2 Honeys +
adulterated adulterated

Figure 3. Selection of the training and test sets. The dataset consisted of 14 pure honeys and their
rice-spiked and sugar beet-spiked samples. In each iteration, 12 honeys and their spiked samples
were chosen as the training set, and the remaining 2 honeys and their spiked samples were chosen
as the test set. This process was done separately for the rice and sugar beet models.

The ML algorithms selected for performing classification for rice and sugar
beet syrup adulteration were the following: Partial Least Squares-
Discriminant Analysis (PLS-DA), Random Forest (RF), Ordinal RF, and
eXtreme Gradient Boosting (XGBoost). The resulting models for rice syrup
adulteration assigned unknown samples to one of the following 5 classes:
honey, 10% rice-spiked, 20% rice-spiked, 30% rice spiked, 50% rice-spiked.
Similarly, the sugar-beet syrup adulteration models, assighed samples to 5
classes consisted of pure honey and sugar beet syrup adulterated honeys.

The selection of algorithms was based on their strong track record for high
prediction accuracy and suitability for high dimensional datasets.

PLS-DA is a popular algorithm widely used for classification tasks,
particularly in complex datasets with high dimensionality and
multicollinearity, such as spectroscopic data. It combines partial least
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squares regression with discriminant analysis, seeking to maximize the
separation between classes while reducing the number of variables used
for prediction (Gromski et al., 2015). In this study, PLS-DA was performed
using the mixOmics library (version 6.24.0).

The RF algorithm is a robust ensemble learning method that operates by
constructing multiple decision trees during training and outputs a pattern
of classes (classification) or an average prediction of the individual trees
(regression). In addition, the ordinal forest (OF) method allows ordinal
regression for ordinal target values (categorical variables which can be
ordered). Since the percentage of adulteration can be considered an
ordinal value ordinal RF was also tested in this project. By aggregating
predictions from different trees, the RF algorithm minimises the risk of
overfitting and improves prediction accuracy and generalisation to unseen
data. Furthermore, by considering random subsets of features for each
tree, it promotes diversity among individual trees, contributing to its
efficiency in handling high-dimensional data and reducing variance
(Breiman, 2001). All RF models were trained and optimised using the caret
library in R (version 6.0-94). Prior to training the RF models a feature
extraction pre-treatment step was also considered using RF to select the
most important features, however, the performance results were
considerably worse compared to the models built on the whole feature
space and therefore this step was abandoned.

XGBoost is another ensemble technique based on decision trees which
has gained popularity due to its effectiveness and efficiency. The algorithm
works by iteratively building an ensemble of weak prediction models,
typically decision trees, and adding them to the ensemble in a sequential
manner. XGBoost utilizes gradient descent optimization techniques for
model training and incorporates regularisation techniques such as
shrinkage and pruning to prevent overfitting and improve generalisation
performance (Chen & Guestrin, 2016). The XGBoost models were trained
using the xgboost library (version 1.7.7.1). An added benefit of using
XGBoost was that the output for each prediction, consists of the respective
probabilities of the sample belonging to each of the possible classes
included in the model.

An additional advantage of all three selected algorithms is their ability to
identify relevant features or predictors contributing to the classification
or regression outcomes enhancing the interpretability of the prediction
models. This can be done by studying the variable importance graphs for
each model.

b) The second stage consisted of building a combined classification model
for identifying both the type of adulterant (rice or sugar beet syrup) and the
level of adulteration. The dataset for developing the combined adulteration
model consisted of the SORS spectra for the 14 pure honey and the
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respective rice and sugar beet spiked honeys at 10, 20, 30 50% adulteration
level (126 samples in total). Then the dataset was separated into training
and test set (91 combinations) following the same approach described
at stage 1, except this time each test set included two pure honeys and
the respective spiked honeys with both rice and sugar beet syrup. The
algorithm employed for developing this model was RF.

c) The final stage consisted of building regression models for rice syrup
and sugar beet syrup adulteration with the aim to predict the percentage
of adulteration as a continuous numerical value rather than a categorical
value. The algorithm employed for regression purposes was RF.

4.5.5. Performance Metrics

For each of the classification models, the confusion matrix for each of
the 91 data combinations was used to extract the model accuracy, i.e.
the ratio of correct predictions over the total number of predictions and
the total error = 1-accuracy. However, to gain more information on the
ability of each model to differentiate between pure and adulterated honey
we introduced two more metrics, the “hard” and “soft” misclassifications.
Among the “hard” misclassifications were the ratio of pure honey
misclassified as adulterated and the ratio of adulterated honeys
misclassified as pure. These are considered as the most serious types of
misclassifications; thus they were captured separately. In contrast “soft”
misclassifications were considered less serious errors and represented
the cases where an adulterated sample was classified as adulterated but
under the wrong adulteration level. The soft misclassification ratio was also
captured during this study.

The metric used for the regression models was the root mean square error
(RMSE) as shown in Equation (1).

RMSE = \/2"_1(+y) (1)

where n =the number of samples in the test set

9 = the predicted value

y = the actual value

4.6. Sugar composition analysis
4.6.1. HPLC-ELSD analysis

Sugar analysis was also undertaken during the project to identify and
quantify the amount of individual sugars present in the honey samples
(Table 1), sugar syrup samples (Table 2) and honey spiked with 10% rice
syrup (R1). All samples were prepared and analysed according to the
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Harmonised Methods of International Honey Commission (Bogdanov,
2009) with some modifications. Chromatographic analysis was performed
using a mobile phase comprised of acetonitrile: water: (80:20, v/v) with
a flow rate of 0.8mL/min and a sample injection volume of 10puL. The
column and detector temperature were held at 35°C during the whole run.
Detection was performed using evaporative light scattering detector (ELSD)
connected to an Agilent 1200 infinity HPLC (Agilent Technologies, UK) fitted
with a prevail carbohydrate ES 5mm size of 250 nm x 4.6 mm diameter and
a guard column of the same type. Fructose, glucose, sucrose and maltose
were quantified using external calibration curves of commercial standards.

4.6.2. Statistical analysis

The Welch Two Sample t-test was applied on the individual sugar content
to compare pure vs rice syrup adulterated honey. The analysis was
performed in R v4.4.0.

5. Results
5.1. DNA marker amplification and specificity

PCR reactions were performed for all 10 primer pairs, amplifying specific
regions of nuclear (nDNA), mitochondrial (mtDNA) or chloroplast (cpDNA)
DNA of the rice, corn and sugar beet DNA extracts. Corn was included
in these tests to ensure there was no cross amplification in non-specific
species (Table 6).

Table 6. PCR amplification of DNA markers with plant control extracts (Positive amplification is
indicated by + and no amplification by -)

Marker rice corn sugar beet
trnl_P6 + + +
rice_PLD1 + +

rice_Zmet3 +

rice_cp +

rice_rrn26 +

beet_ant

beet01 - - +
beet02 - - +
beet_matK - - +
beet_orf409 - - +

The plant positive control marker (trnL_P6) was amplified in all three of the
plant extracts. Of the rice markers the PLD_1 was amplified in both rice
and corn, but the Zmet3, cp and rrn26 were specific to the rice extract.
For sugar beet the ant marker was not successfully amplified, while 07, 02,
matK and orf409 were only amplified in the sugar beet extract.
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The amplification success of the markers was then compared using qPCR,
where a lower COI value indicated a higher amount of target was present
in the sample (Table 7). These results confirmed that the rice_ PLD1 was
amplified in both rice and corn, with sugar beet also amplifying rice PLD1
after 35 cycles, explaining why it wasn't detected in the conventional PCR.
Similarly, rice_cp showed late amplification in both corn and sugar beet
extracts (COI 38.42 and 38.59). All other markers were only amplified in
the species of interest, apart from the beet_ant marker which failed to
amplify. In general, the specific markers targeting nDNA produced results
with higher Cq values for the target species (Cq 22.30-23.04), the mtDNA
markers produced Cq values of 18.46-18.88 whilst the cpDNA markers
produced the lowest Cq values between 15.45-16.48 for the target species.
However, the chloroplast markers for rice showed a lower specificity,
suggesting that the mitochondrial markers might be a better choice for
species specificity.

Table 7. gPCR amplification (Cq ) of DNA markers with plant control extracts (No amplification is
indicated by -)

Marker Target genome* rice Cq corn Cq sugar beet Cq
trnL_P6 cp 15.11 15.01 15.17
rice_PLD1 n 23.04 26.4 35.97
rice_Zmet3 n 22.30

rice_cp cp 16.48 38.42 38.59
rice_rrn26 mt 18.88

beet ant n

beet01 u 24.62
beet02 u 28.54
beet_matK cp 15.45
beet_orf409 mt 18.46

* target genome; cp: chloroplast, mt: mitochondria, n: nuclear, u: unknown

5.2. DNA extraction from sugar syrups

5.2.1. Amplification of general plant marker

The two DNA kits QIAGEN DNeasy Plant Pro and Macherery-Nagel
Nucleospin Food Kit were used to extract plant DNA from the sugar syrups,
and extraction efficiency was evaluated by assessing the amplification of
the chloroplast trnL P6 loop with gPCR, to evaluate the yield of plant DNA
(Figure 4, Table 8).
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from three PCR reactions.

For both kits the DNA extraction was successful, with the trnL_P6 marker
displaying amplification above 32 cycles in all samples, which is notable
given the difficult sample matrix. For all samples the Cq value was lower
for the Nucleospin Food kit, indicating a higher plant DNA yield with this
kit. Samples B4-7 were not extracted using the Plant Pro kit therefore not
included in this analysis. The Nucleospin Food kit was subsequently used

Syrup sample

for further extractions in this study.

Table 8. Comparison of the amplification (Cq value) of the trnL_P6 marker with sugar syrup DNA

extractions prepared from different extraction kits.

kit
| Nucleospin
B Plant Pro

Sample Cq (Nucleospin) Cq (Plant Pro) SD (Nucleospin) SD (Plant Pro)
R1 23.63 27.83 0.14 0.17

R2 26.52 30.75 0.07 0.26

R3 26.97 31.04 0.11 0.88

R4 24.52 26.8 0.14 1.06

R5 17.9 20.79 0.08 0.07

R6 27.45 29.92 0.56 0.62

R7 2717 28.72 0.11 0.1

S1 28.14 31.31 0.56 0.98

S2 29.24 31.53 0.11 0.27
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Sample Cq (Nucleospin) Cq (Plant Pro) SD (Nucleospin) SD (Plant Pro)
B1 25.89 29.46 0.39 0.45
B2 27.06 30.81 0.16 0.08
B3 24.82 30.51 0.07 2.63

5.2.2. Amplification of plant specific markers

Based on the specific marker amplification results, one marker was
selected for each species: rice_rrn26for rice, and beet_matK for sugar beet.
All syrup DNA extracts were evaluated for marker amplification by gqPCR.
The results, shown in Figure 5, are scaled where the amplification of the
target plant was set at 100% after applying a single threshold with baseline
subtraction to the data. The standardised Cq and SD values are shown in
Table 9, including the trnL_P6 plant marker results for comparison.

All rice syrups showed amplification for the rice_rrn26 marker, ranging
from Cq 19.73 (R5) to Cq 37.32 (R7). Late amplification for rice_rrn26 was
seen in the sugar syrups of unknown origin (51 and S2), but with high
Cq values ranging from 35.33-37.59. The beet_matK marker did not show
strong amplification in any sample other than the sugar beet plant extract.
The sugar beet syrup extracts showed Cq values between 33.44-35.68 for
beet_matK, with no amplification in B4, B5 and B7. Similar amplification
values were seen for beet_matK across the other sugar syrups (Cq
33.48-36.69), leading to the conclusion that this is unlikely to be linked
to the presence of sugar beet DNA in the samples. Therefore, no further
work was carried out with the beet matK marker. All three of the other
successful beet markers (beet01, beet02 and beet_orf409) were also tried
with the sugar beet syrup extracts, with no amplification success (results
not shown).
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Figure 5. Amplification of DNA markers (A) rice_rrn26 and (B) beet_matK with plant and sugar syrup
extracts. Amplification is scaled where amplification for the target plant is set at 100% and error

bars representing the standard deviation from three PCR reactions.

Table 9. Amplification of DNA markers with sugar syrup extracts and plant control extracts

- trnL_P6 trnL_P6 rice_rrn26 rice_rrn26 beet_matK beet_matK
sample Cq Sb Cq SD Cq SD
rice 15.26 0.07 17.32 0.11 * *

R1 23.32 0.04 22.65 0.02 34.59 0.59
R2 26.29 0.11 26.27 0.09 34.18 0.03
R3 26.42 0.08 34.02 0.43 35.35 1.45
R4 244 0.06 233 0.15 34.31 1.26
R5 17.43 0.03 19.73 0.02 33.48 0.28
R6 27.81 0.43 33.8 0.31 35.69 0.62
R7 26.78 0.09 37.32 0.25 * *

S1 27.98 0.53 37.03 0.8 * *
S2 28.69 0.19 37.59 0.22 * *
beet 14.59 0.07 * * 14.97 0.13
B1 25.6 0.1 * * 33.44 0.5
B2 25.84 0.88 * * 35.68 0.34
B3 24.19 0.06 * * 34.47 0.77
B4 29.61 0.87 * * * *

B5 31.69 0.66 * * * *
B6 28.89 0.1 * * 34.72 0.95
B7 30.01 0.75 * * * *
negative 36.31 0.70 * * * *

* no amplification
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5.3. Detection of rice marker in adulterated
honey samples

To reproduce adulterated honey rice syrups R1, R2 and R4, were selected

to spike natural honey H17 and the results are shown in Figure 6. The rice
marker was detected in 1% spiked honey, with Cq values proportionate to
the percentage spike, except in the case of R1 where the 5% spiked sample
had a lower value (Cq 25.09) than the 30% (Cq 26.84) and 10% (Cq 26.73)
spike (Table 10).

Sample (% spiked)

Scaled amplification of rice marker (%)
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Figure 6. Amplification of DNA marker rice_rrn26 for honey spiked with rice syrups (A) R1, (B) R2
and (C) R4. Amplification scaled where the rice control extract is set at 100% and error bars

represent the standard deviation from three PCR reactions and error bars represent the standard

deviation from three PCR reactions.

For the rice marker there was a very low amplification in the pure honey
sample (0% spike) however this had a considerably higher Cq value than
the 1% spiked sample, with a difference of between ~8-10 cycles for the
rice marker, permitting the clear separation of pure honey from the lowest
1% spike.

Table 10. Amplification of rice marker rice_rrn26 in honey (H17) spiked with different rice syrups.

spike R1Cqy R1SD R2Cqy R2 SD R4 Cqy R4 SD
100% 22.19 0.23 25.26 0.26 21.74 0.06
30% 26.84 1.54 26.16 0.03 232 0.07
10% 26.73 0.96 27.27 0.11 24.54 0.11
5% 25.09 0.16 27.98 0.13 24.94 0.06
1% 29.47 0.2 29.39 0.04 27.25 0.17
0% 37.25 2.75 37.25 1.21 37.25 1.21
negative * * * * * *

* no amplification
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5.4. Rice marker amplification in different
honey types

5.4.1. Rice marker background amplification

To account for the background amplification of the rice marker detected
in natural honey, the rice_rrn26 marker was tested for amplification in
16 different honey types, in order to determine a threshold value for
the method. Honey H15 was excluded from the results as there was no
amplification with the trnL_P6 marker used as a control for the plant DNA
(values shown in Table 11). The rice marker was amplified in 8 out of
16 honey samples, with the buckwheat honey (H8) showing the strongest
amplification with a Cq value of 35.89. To ensure the test would not flag
natural honey as adulterated honey, a threshold was set by taking the
sample with the lowest Cq and adding a 95% confidence interval. This was
done using the data which had been standardised by applying a single
threshold with baseline subtraction, to account for differences in
instrument response. For rice the threshold was 34.27 cycles, which is
shown on Figure 7 as the dashed line.
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Figure 7. Amplification of rice marker rice_rrn26 in pure honey samples. Amplification is scaled to
100%, with the axis break indicated as = and error bars represent the standard deviation of three
PCR reactions.

Table 11. Amplification of pure honeys with plant marker trnL_P6 and rice marker rice_rrn26

- trnlL_P6 trnlL_P6 rice_rrn26 rice_rrn26
sample Cq SD Cq SD
HO1 26.46 0.24 * *
H02 21.38 0.11 * *
HO3 26.60 0.05 * *
HO4 27.16 0.09 * *
HO5 26.18 0.15 * *
HO6 21.68 0.1 * *
HO7 28.86 0.31 * *
HO8 27.81 1.66 35.89 0.83
H09 23.42 0.39 36.4 0.76
H10 24.94 1.76 * *
H11 20.77 0.11 37.23 0.84
H12 24.58 0.05 37.22 1.14
H13 21.5 0.08 37.54 0.87
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trnL_P6 trnL_P6 rice_rrn26 rice_rrn26
sample Cq SD Cq SD
H14 24.34 1.3 37.61 0.12
H'] 5 * * * *
H16 21.21 0.13 39.34 0.57
H17 24.39 0.07 36.45 1.7
negative * * * *

*no amplification

5.4.2. Rice marker amplification in 5% spiked honeys

Each honey type was spiked with 5% rice syrup R1 and tested for the
rice_rrn26 marker amplification to determine the suitability of the test for
different honeys. Extracts which did not show amplification for the plant
trnL_P6 loop were excluded from the analysis (HO4, H10 and H15), as
shown in Table 12. All spiked honey samples showed amplification for the
rice_rrn26 marker above the threshold of 34.27 cycles (equalling 25.03%
when scaled) (Figure 8).
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Figure 8. Amplification of rice_rrn26 in different honey types spiked with 5% rice syrup 1.
Amplification is scaled where the rice plant control was set at 100% and error bars represent the
standard deviation from three replicates. The axis limit is set to show above the rice threshold
(25.03%).

Table 12. Amplification of plant marker trnL_P6 and rice marker rice_rrn26 in 5% spiked honey

- - trnl_P6 trnlL_P6 rice_rrn26 rice_rrn26
Honey Spike (%) Cq SD Cq SD
HO1 0 25.83 0.2 * *
HO1 5 26.29 0.04 28.88 0.3
HO2 0 20.14 0.08 * *
H02 5 19.43 0.04 26.59 0.11
HO3 0 25.99 0.09 * *
HO3 5 23.31 0.09 26.02 0.06
HO4 0 26.34 0.05 * *
HO4 5 * * * *
HO5 0 25.26 0.14 * *
HO5 5 25.12 0.21 26.34 0.1
HO6 0 20.97 0.16 * *
HO6 5 21.01 0.1 27.09 0.06
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- - trnL_P6 trnL_P6 rice_rrn26 rice_rrn26
Honey Spike (%) Cq SD Cq SD
HO7 0 28.41 0.4 * *
HO7 5 26.18 0.6 25.46 0.11
HO8 0 25.42 0.13 * *
HO8 5 25.49 0.09 25.69 0.37
HO09 0 22.32 0.02 * *
HO09 5 23.48 0.09 29.59 2.59
H10 0 24.94 1.76 * *

H1 0 5 * * * *
H11 0 20.77 0.11 * *
H11 5 19.87 0.16 28.13 1.31
H12 0 23.96 0.07 36.08 1.14
H12 5 25.5 0.06 27.68 NA
H13 0 22.01 2.2 37.74 0.26
H13 5 19.47 0.01 27.22 NA
H14 0 24.34 1.3 * *
H14 5 24.96 1.87 31.02 NA
H15 0 * * * *
H15 5 * * * *
H16 0 21.21 0.13 39.34 0.57
H16 5 22.09 0.2 24.91 0.09
H17 0 22.58 0.08 36.45 1.7
H17 5 24.23 0.92 247 0.08
negative 0 * * * *

*no amplification

NA: means there is no SD as the marker was only amplified in 1/3 replicates

5.4.3. Application to commercial honeys

Commercial samples marketed as UK origin honeys were purchased from
the UK market and extracted with the described protocol. The honey
extracts were tested for amplification of the trnL_P6 and rice_rrn26
markers (Table 13). Three of the commercial honey extracts (CH2 - CH4)
showed good amplification of plant DNA based on the trnL P6 marker
(Cq 19.16 to 23.97), but one commercial honey extract (CH1) showed no
amplification for the plant DNA marker. Of the three honeys which
amplified the control plant marker there was no amplification of the
rice_rrn26 marker.

Table 13. Amplification of commercial honey extracts with plant marker trnL_p6 and rice marker
rr26.

- trnL_P6 trnlL_P6 rice_rrn26 rice_rrn26
Sample Cq SD C q SD
CH1 19.23 0.19 * *
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trnL_P6 trnL_P6 rice_rrn26 rice_rrn26
Sample Cq SD Cq SD
CH2 19.16 0.06 * *
CH3 23.97 0.31 * *
CH4 19.23 0.19 * *
negative * * * *

*no amplification

5.5. Sugar composition of pure, spiked and

commercial honey samples

Each sugar syrup, honey type, honey type spiked at 10% with R1 and
commercial honey was subjected to HPLC-ELSD analysis to quantify the
amount of fructose, glucose, sucrose and maltose in the sample (Table
14). Based on the obtained results and considering a 95% confidence
interval, the 17 pure honey samples and 4 commercial honey samples
were all below the 5 g/100g limit for sucrose. Even HO7 and CH4, the
borage honeys, which have an increased limit of 15 g/100g according to
legislation (Codex Alimentarius, 2022; Honey (England) Regulations, 2015).
However, when assessing the sum of fructose and glucose, one honey
sample (H11) was under the 60 g/100g limit with a value of 56.79 g/100g,
meaning it would not comply with the honey regulations. All commercial
honey samples were within regulation for sugar composition.
Compositional analysis of the rice syrup used for spiking (R1) showed that
it was composed of 1.49 g/100g fructose, 22.49 g/100g glucose, 0.22 g/
100g sucrose and 31.90 g/100g of maltose, with a fructose-glucose sum of
23.99 g/100g. Therefore, it is not surprising that the sucrose level of the
honeys spiked with R1 did not increase over the legislated 5 g/100g or 15
g/100g threshold. In all 17 of the honey types spiked with rice syrup, the
total of fructose and glucose fell below the 60 g/100g legislation, with a
mean concentration of 67.27 g/100g before spiking, and 50.57 g/100g after
spiking. Consequently, these pseudo-adulterated samples would have
been flagged as non-compliant of the honey standard regulations.
Moreover, the maltose concentration of R1-spiked samples was
significantly elevated compared to the pure honeys with mean
concentrations of 1.43 g/100g and 3.47 g/100g respectively (p < 0.01).

Table 14. Sugar composition of honey, honey spiked with 10% rice syrup (R1) and syrup samples

Sample Spike Fructose (g/ Glucose (g/ Sucrose (g/ Maltose (g/ F+G (g/
(%) 100g) 100g) 100g) 100g) 100g)
HO1 0 36.18 29.00 0.99 2.14 65.18
HO1 10 26.74 22.53 0.72 3.88 49.27
HO02 0 38.37 30.80 1.41 0.58 69.17
HO02 10 26.36 22.76 1.08 2.89 49.11
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Sample Spike Fructose (g/ Glucose (g/ Sucrose (g/ Maltose (g/ F+G (g/
(%) 100g) 100g) 100g) 100g) 100g)
HO3 0 38.96 31.76 1.84 2.16 70.72
HO3 10 27.71 22.28 2.50 3.06 49.98
HO4 0 33.35 38.18 0.59 1.90 71.53
HO4 10 23.42 27.67 1.08 3.59 51.09
HO5 0 37.92 28.75 0.91 0.98 66.67
HO5 10 27.70 22.49 0.74 4.24 50.19
HO6 0 38.10 35.58 0.68 0.75 73.68
HO6 10 26.86 26.75 0.54 2.91 53.61
HO7 0 37.26 31.24 4.86 2.75 68.49
HO7 10 26.31 23.21 3.27 4.39 49.52
HO8 0 35.09 35.32 1.37 0.21 70.42
HO8 10 26.05 24.50 0.99 2.62 50.55
HO9 0 37.87 35.19 0.50 1.70 73.06
H09 10 26.74 24.83 0.33 2.60 51.56
H10 0 34.11 26.43 0.55 1.73 60.54
H10 10 27.34 23.36 0.47 2.94 50.70
H11 0 33.51 23.29 1.23 0.52 56.80
H11 10 28.73 21.96 1.04 3.30 50.68
H12 0 32.93 26.33 0.77 1.78 59.26
H12 10 27.33 23.46 0.66 3.91 50.79
H13 0 33.53 26.10 0.65 0.67 59.64
H13 10 27.70 21.47 0.70 2.68 49.16
H14 0 33.02 26.44 1.13 0.80 59.46
H14 10 27.78 23.38 0.99 413 51.16
H15 0 41.61 33.92 0.96 1.95 75.54
H15 10 27.93 24.05 0.56 4.42 51.98
H16 0 38.74 31.93 1.50 0.33 70.66
H16 10 26.61 23.24 1.03 3.68 49.85
H17 0 40.81 32.00 415 3.41 72.81
H17 10 28.11 22.28 2.77 3.78 50.39
CH1 0 37.69 30.72 4.90 0.46 68.42
CH2 0 44.69 33.59 1.94 0.45 78.27
CH3 0 43.05 31.34 3.35 0.51 74.39
CH4 0 35.84 30.48 4.25 3.04 66.32
R1 0 1.49 22.49 0.22 31.90 23.99
R2 0 1.49 23.31 0.25 28.57 24.80
R3 0 1.68 17.34 0.85 42.59 19.02
R4 0 1.77 9.54 1.51 28.94 11.31
R5 0 1.65 9.76 0.50 12.39 11.41
R6 0 1.49 23.01 0.32 36.70 24.51
R7 0 1.79 26.90 0.62 37.14 28.69
R8 0 3.58 28.11 1.49 33.10 31.69
1 0 1.49 0.82 0.75 41.16 2.31
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Sample Spike Fructose (g/ Glucose (g/ Sucrose (g/ Maltose (g/ F+G (g/
(%) 100g) 100g) 100g) 100g) 100g)
c2 0 1.79 22.53 0.86 33.48 24.32
c3 0 1.49 1.56 1.93 50.86 3.05
S1 0 1.83 17.19 0.54 8.97 19.01
S2 0 5.12 23.24 18.95 0.30 28.36
B1 0 19.03 16.40 27.34 0.21 35.43
B2 0 39.71 31.03 7.92 0.30 70.74
B4 0 1.49 0.43 53.99 0.29 1.92
B5 0 24.74 24.37 31.52 0.27 49.11
B6 0 23.88 26.97 34.64 0.40 50.85
B7 0 2413 23.67 31.64 0.28 47.80

5.6. SORS Results

The following sections describe the results acquired using SORS coupled
with multivariate analysis and machine learning for prediction purposes.

5.6.1. PCA

PCA plot was employed to visualise the clustering of the samples as part of
the exploratory data analysis. Figure 9 shows a PCA plot containing the 17
pure honey samples, the sugar beet and rice syrups, the individual sugar
standards (50, 25, and 12.5% w/v) and the water samples (blanks).
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PCA plot for honeys, sugar syrups and individual sugars
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Figure 9. PCA plot of the SORS spectra acquired for honeys, sugar syrups, and sugar aqueous
solutions. Pure honeys (H1-H17) are coloured in green, sugar beet syrups (b01 and b05-b07) in
blue, and rice syrups (r01-r04 and r06-r08) in orange. The two blanks are water, while the
individual sugars fructose (f), glucose (g), sucrose (s), and maltose (m) are 50, 25, and 12.5% w/v
aqueous solutions.

By observing the sample clustering, it becomes obvious that the majority
of the pure honeys formed a tight cluster on the bottom right side of the
PCA score plot, indicating similar biochemical profiles. The 14 honeys that
clustered close together were woodland, sycamore, phacelia, Himalayan
balsam, spring set, borage, meadowfoam, sea lavender, echium, field and
forest, hedgerow, English blossom, apple blossom, and wildflower.
buckwheat (H8) and ivy honey (H4) were positioned away from the main
cluster towards the upper middle area of the PCA plot, while heather
honey (H11) was positioned in between. Figure A 1 (Appendices) shows the
colour differences among the different types of honey, with the ivy (H4)
and buckwheat (H8) having distinctly dark amber colours.

Most rice syrups formed a cluster at the right middle side of the PCA plot
with the exception of R3 and R4, which were the darkest rice syrups as
shown in Figure A 2 (Appendices). Interestingly, maltose and glucose also

FSA Research and Evidence

33


https://science.food.gov.uk/article/124522-developing-a-new-testing-methodology-for-honey-authentication/attachment/260964.svg

Developing a New Testing Methodology for Honey Authentication

clustered closely to the rice syrups which indicated that they were the
dominant sugars in rice syrups. On the contrary, two of the sugar beet
syrups (B5 and B6) were positioned relatively close to the 14 pure honeys,
together with the 50% sucrose aqueous solution, while the other two sugar
beet syrups were spread towards the top middle of the PCA plot. Sugar
beet syrups 5 and 6 were marketed as high fructose “golden syrups” which
might explain their proximity to the 14 honeys. On the other hand, sugar
beet syrups B1 was marketed as molasses and B7 was a blend of a sugar
beet and sugar cane syrup. Both of these syrups had a distinct dark brown
colour and produced a high intensity SORS signal and strong fluorescence
interference similar to the signal from ivy and buckwheat honeys which
were also dark honeys.

The sugar composition of the sugar syrups and pure honeys was further
confirmed by HPLC-ELSD, and the results are displayed in Table 14. The
sugar composition results show that the dominant sugars in all rice syrups
were maltose and glucose, with concentrations ranging from 28.57 to 42.59
g/100 g~ for maltose and from 9.54 to 28.11 g/100 g~ for glucose. Rice
syrup R1, which was used for spiking the honey samples, contained 31.90
g/100 g~1 maltose and 22.49 g/100 g~! glucose. Rice syrups R3 and R4
exhibited the lowest glucose concentrations among the rice syrups, at
17.34 and 9.54 g/100 g~!, respectively, while R4 also had the highest
maltose concentration, indicating a lower degree of maltose conversion to
glucose in this syrup. Figure A 4A (Appendices), depicting the processed
Raman spectra for all the rice syrups along with maltose and glucose
solutions (50% w/v), also shows significant variations in the Raman profiles
of R3 and R4. However, by looking at the biplot in Figure A 4B (Appendices),
showing the 150 most important variables for the PCA in Figure 9, it
becomes apparent that the clustering of maltose; glucose; and rice syrups
R1, R2, and R6-R8 are primarily driven by the Raman shifts around
1380-1390 c¢cm~!, while the Raman shifts around 1400 cm™' were
responsible for the separation of R3 and R4. Therefore, despite the
apparent differences between rice syrup spectra, the most important
features contributing to their separation on the PCA plot concentrate
between 1380 and 1400 cm™1. For sugar beet syrups, the dominant sugar
was sucrose, at concentrations between 27.33 and 34.63 g/100 g-1,
followed by fructose and glucose at roughly equal concentrations. For
B5, which was used for spiking the honey samples, the concentrations of
sucrose, fructose, and glucose were 31.52, 24.74, and 24.37 g/100 g-1,
respectively. Based on the clustering patterns observed in Figure 9, the
group of 14 closely clustered pure honeys were selected for further
developing prediction models for honey adulteration detection. Figure 10A
shows the PCA plot of the 14 pure honeys with their corresponding rice-
spiked samples. The sample distribution in the PCA plot shows a very clear
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linear separation according to the levels of adulteration, with the 20-50%
adulterated samples being completely separated from the pure honey
samples.

A similar pattern was observed for the pure honeys and sugar beet-spiked
samples, although there was more overlap between samples belonging to
different adulteration level groups (Figure 10B). The samples belonging to
the 20-50% adulteration level were also clearly separated from the pure
honeys, indicating a limit of detection around 10% for both types of sugar
syrups. In addition, Figure A 5 (Appendices) shows the clustering of pure
and adulterated samples for both rice and sugar beet-spiked samples,
which reveals that different levels of the rice-spiked samples are separated
over a longer distance along the PC1 axis while sugar beet-spiked samples
are much closer together, forming overlapping clusters.

5.5.2. Classification Models Results

The performance metrics obtained for each of the algorithms employed
for rice and sugar beet syrup adulteration detection are summarised in
Tables 15 - 17. The first two columns show the hard misclassifications, i.e.
the percentage of pure honeys misclassified as adulterated and vice versa
for all the 91 different combinations. The third column summarises the
percentage of soft misclassifications, i.e. adulterated samples assigned to
the wrong adulteration level. The last column shows the total error rate,
i.e. the percentage of misclassified samples out of all the samples tested (n
=910).

For the rice syrup classification models the RF classification algorithm had
the best performance overall compared to the other algorithms tested. In
particular, only 1.10% of pure honeys were misclassified as adulterated,
which corresponds to 2 instances out of the total 182 (91 combinations of
2 pure honeys derived out of 14 pure honeys). In contrast XGBoost had the
highest percentage of pure honeys misclassified as adulterated at 7.69%,
while for PLSA-DA and RF-ordinal it was 2.20% and 4.40% respectively.

When considering the hard misclassification rates for the adulterated
samples, XGBoost was marginally better at 1.79% followed by the RF
classification algorithm at 2.61%. It is also notable that for all algorithms
considered the only adulterated samples misclassified as pure honey
belonged to the 10% adulteration level, indicating that the level of
detection (LOD) is around 10% for all methods.

Regarding the soft misclassifications, both RF algorithms performed best
(14.15% and 14.97% respectively) compared to the other algorithms,
exhibiting higher ability to differentiate between adulteration levels. The
PLSDA had similar performance at 16.07% soft misclassifications while
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Figure 10. PCA plots showing the clustering of the 14 pure honeys and their corresponding rice
syrup-spiked samples at different adulteration levels (A) and the clustering of the 14 pure honeys
and their corresponding sugar beet syrup-spiked samples at different adulteration levels (B). Red
dots = pure honeys, blue dots = 10% adulteration, green dots = 20% adulteration, purple dots =
30% adulteration, and orange dots = 50% adulteration. The ellipses represent 95% confidence
ellipses for each group.
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the XGBoost algorithm had the highest misclassification rate at 26.10%.
As expected, all samples belonging to the 50% adulteration level were
correctly classified by all algorithms.

The total error rate confirmed that the RF classification algorithm
performed best with a total of 13.63% total error rate, while XGBoost
exhibited the highest error rate at 23.85%.

Table 16 displays the results for the sugar beet classification models, where
again, the RF classification model had the best results with 15.71% total
misclassifications and XGBoost also had the lowest accuracy out of all
with almost 31% misclassifications. The hard misclassifications for RF
classification model were almost 1% of the pure honey misclassified as
adulterated, and almost 2% of the adulterated samples were misclassified
as pure.

The XGBboost results for each sample consisted of the predicted
probabilities for each class of adulteration level, Table A 1 shows an
example of the XGBoost results. The highest probability was chosen as the
predicted class of the sample.

Since RF consistently outperformed the other algorithms, it was selected
as the algorithm of choice for building a model based on the combined
dataset for rice and sugar beet spiked samples. As seen in Table 17, only
1.10% of the pure samples were misclassified as adulterated and 3.64%
of the adulterated samples were misclassified as pure. The total
misclassifications were 19.23%. In addition, 2.20% of the rice-adulterated
samples were misclassified as sugar beet adulterated and 4.90% of the
sugar beet adulterated were misclassified as rice-adulterated.

The spread of total classification accuracy results for the 91 iterations per
algorithm and syrup type was further visualised in box plots, as shown in
Figure A 6 (Appendices). The box plots further demonstrate the superior
performance of the RF algorithm, with all the models built with RF
(classification and ordinal) having a median accuracy of around 90% and
exhibiting left skewness (median > mean), meaning the majority of values
were “large”, with a few values towards the low end of the accuracy
spectrum. The only exception was the RF classification models for rice
syrup adulteration, which had a median around 80% and exhibited right
skewness.

Table 15. Results of the classification models for the rice syrup-adulterated samples

Rice Models Honey Adulterated Adulterated soft Total
misclassified misclassified misclassifications misclassifications
as adulterated as honey

PLSDA 2.20% 8.79% 16.07% 20.33%

RF_Classification 1.10% 2.61% 14.15% 13.63%
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Rice Models Honey Adulterated Adulterated soft Total
misclassified misclassified misclassifications misclassifications
as adulterated as honey

RF_Ordinal 4.40% 5.63% 14.97% 17.36%

XGBoost 7.69% 1.79% 26.10% 23.85%

Table 16. Results of the classification models for the sugar beet syrup-adulterated samples

Sugar Beet Honey Adulterated Adulterated soft Total

Models misclassified misclassified misclassifications misclassifications
as adulterated as honey

PLSDA 1.10% 1.92% 19.51% 17.36%

RF_Classification 1.10% 2.06% 17.31% 15.71%

RF_Ordinal 1.10% 1.92% 17.72% 15.93%

XGBoost 9.89% 4.53% 31.73% 30.99%

Table 17. Results of the RF classification model for the adulterated samples combined (rice and
sugar beet)

Rice and Sugar Honey Adulterated Adulterated soft Total

Beet Combined misclassified misclassified misclassifications misclassifications
Model as adulterated as honey

RF_Classification 1.10% 3.64% 17.86% 19.23%

5.5.3. Regression Models Results

Table 18 shows the mean, max, and min RMSE values acquired for the
rice and sugar beet regression models after validating with the test set.
RMSE is one of the most widely used measures for the performance of a
regression model and the lower the RMSE, the closer the predicted value
is to the ground truth. This was also demonstrated by calculating the RMSE
values which were similar for both rice and sugar beet, with a mean value
of around RMSE = 3.7.

Table 18. Summary statistics of the RMSE results obtained for the rice and sugar beet adulteration
regression models with RF based on the test set validation. SD = standard deviation.

Random Forest Regression Minimum RMSE Maximum RMSE Mean RMSE
Rice 0.60 7.56 3.69
Beet 1.96 7.33 3.67

Figure 11 shows a scatterplot of predicted vs. actual values for 1 of the
91 models for rice syrup adulteration (Figure 11A) and 1 of the sugar
beet adulteration models (Figure 11B). A line, x =y, representing perfect
agreement between the predictions and the ground truth, has been fitted
in each plot, surrounded by y = x + 3 lines, which represent a 6% mismatch
boundary between the predicted values and ground truth, which
contained the majority of the predictions for both types of syrups. These
plots could also provide a useful indication of bias or large variance
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indicative of undertraining or overtraining of the models. The absence
of these trends from our results provides further proof of the optimised
model training process. The spread of the RMSE for the 91 iterations
for the rice and sugar beet regression models is displayed through box
plots (Figure A 7 (Appendices)). The plot shows that both have very similar
means, with the rice models’ RMSEs having more variation than the sugar
beet models.

combination 91 - RMSE: 4.780

50 - e .

A . o
e
ie]
©
Q
=
©
o
©
2
(&]
<C

0 10 20 30 40 50

Predicted adulteration
combination 6 - RMSE: 2.1672
50 - e ,

B — -, -
C
ie]
©
Q
=
©
o
©
2
(&]
<

0 10 20 30 40 50
Predicted adulteration

Figure 11. A scatter plot showing actual vs. predicted adulteration percentage for a random RF
regression model for rice syrup adulteration (A) and sugar beet syrup adulteration (B). The solid
line represents y = x (perfect agreement between predictions and ground truth), while the top and
bottom dashed lines representy = x + 3 and y = x - 3 respectively.
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5.5.4. Variable Importance

The variable importance for each RF model was also calculated to
determine the Raman shifts responsible for the predictive power of the
classification and regression models. The results showed general
agreement between the Raman bands identified as the most important for
the prediction and the areas in the SORS spectra with visible differences
between the pure and adulterated honeys. These wavenumbers also
correspond to the characteristic peaks identified in the individual sugar
spectra, i.e., maltose, glucose, and sucrose, which are the dominant sugars
in the sugar syrups. Figure 12 shows an example of the variable
importance for one of the rice and sugar beet models developed alongside
their corresponding SORS spectra. For rice adulteration, the Raman bands
mainly responsible for the predictive power of the classification RF models
ranged from 860 cm™! to 890 cm™" and 920 cm™ to 950 cm™!, with the
peaks at 933-937 cm~' having the highest contribution. For the sugar beet
models, the highest peaks were in the range from 700 cm™! to 850 cm™
with the wavenumbers at 808, 711, 839, 718, and 715 cm™! showing the
highest contribution in order of importance. Figure A 8 (Appendices) shows
that the most important variables for the combined model were located
between 700 cm™! and 950 cm™!, with the highest peak at ~935 cm™',
which corresponds to a combination of the important variables for the
individual models.
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Figure 12. Variable importance for rice and sugar beet classification models. Plot (A) shows the
variable im-portance for one of the rice models, and (B) shows the SORS spectra for one of the
pure honeys and its rice-spiked corresponding samples. Plot (C) shows the variable importance for
one of the sugar beet models, while (D) shows the SORS spectra of one of the pure honeys with its
sugar beet-adulterated samples. The arrows and boxes point to the Raman shift areas identified as
significant for the model accuracy.
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The variables identified as most important for the RF regression models
were also similar to the classification models (Figure A 9 (Appendices)). The
most important variables for the rice adulteration model were the Raman
shifts at 873, 870, and 939 cm™', in order of importance, while for the
sugar beet adulteration models, the most important variables in order of
importance were the Raman shifts at 781, 775, 708, 808, and 839 cm™.

6. Discussion
6.1. DNA markers and their specificity

In this study a DNA barcoding approach to authenticate honey was
evaluated using novel endogenous markers developed for rice and sugar
beet syrup detection. Typically, endogenous reference genes are required
to be species-specific, having a stable low copy number with limited intra-
species variability (Chaouachi et al.,, 2013). They are generally used to
determine genetically modified organisms (GMOs) occurrence in
ingredients, as the presence of the modified gene is compared to that
of the reference gene (Xiujie et al., 2019). However, in the case of highly
processed food products, such as sugar syrups, low copy number genes
are less likely to be detected due to the low amount of highly degraded
DNA present in the sample (Caldwell, 2017). Hence, it makes more sense
to target genome regions with high copy number, such as chloroplast or
mitochondrial genes, to increase the chance of detection. Although this
eliminates the possibility of accurate fraud quantification, in the case of
honey authentication this is not a necessity, as simple identification of
adulterant material provides substantial evidence for misconduct (Nehal
et al.,, 2021). In our study, appropriate DNA markers were identified from
literature, or designed in house, targeting nuclear, chloroplast and
mitochondrial gene regions in rice or sugar beet.

Most of the markers tested showed flaws, such as no amplification or cross
amplification with other species. The beet_ant marker was developed by
Chaouachi et al. (2013) as a reference marker specific to sugar beet (Beta
vulgaris L). They found the marker amplified in all 39 of the Beta vulgaris L
varieties tested, with no amplification in closely related species. However,
in our study the beet_ant marker failed to amplify, despite similar PCR
conditions (60°C annealing temperature) being used. This could be due
to a different variety of sugar beet being used, as the “Altissima” variety
used here was not included in their study, but these results unfortunately
rendered the beet_ant primer unsuitable as an endogenous sugar beet
marker. The rice_PLD1 marker was used by Sobrino-Gregorio et al. (2019)
to detect honey adulteration with rice molasses, they determined that
it was the most effective primer pair used in their study providing
quantification at 2-5% when using a standard curve of rice genomic DNA
(Sobrino-Gregorio et al., 2019). However, we showed that the rice PLD1
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marker was also amplified in the corn and sugar beet extracts. Moreover
these results were confirmed by Xiujie et al. (2019), who found that the
rice_PLD1 displayed non-specific binding in both maize and potato, further
proving evidence that it is not a highly specific marker for rice (Xiujie et al.,
2019).

Of the remaining successful DNA markers, the primers targeting regions of
NDNA produced results with higher COI values than those targeting cpDNA
or mtDNA. Although nuclear markers have been used with success in other
studies, there are clear advantages to using higher copy number targets.
For instance, although Truong et al. (2022) were successfully using the
nuclear corn_PERK2 marker to detect Korean honey adulterated with corn
syrup, they were only able to reach a detection limit of 210%, where here
a LoD of 1% was achieved with plastid markers - although a different
syrup type was used (Truong et al., 2022). Indeed, mitochondrial DNA is
widely used in DNA analysis of food products, as it is believed that the
plastid structure further reduces the DNA degradation (Sajali et al., 2018).
Although the chloroplast markers used in this study produced lower C
values (higher detection) than the mitochondrial markers, they had a lower
specificity to the target plant, as the rice cpDNA markers showed cross
amplification in the other non-target plant DNA extracts. Most likely this
is due to the fact that chloroplast genomes are more conserved than
the mitochondria genomes, possessing a slower rate of evolution and
sequence variability (F. Li et al., 2022). This can explain why the beet_matK
chloroplast marker showed low amplification levels in many of the sugar
syrup extracts, despite appearing species specific when tested on the rice
and corn plant extracts.

6.2. DNA extraction from sugar syrups

One of the challenges of DNA based food authentication tests is the DNA
extraction, as food products contain a complex matrix of ingredients which
may have been altered by different types of processing. Honey itself can
be a difficult matrix to extract DNA from due to the presence of various
PCR inhibitors such as organic acids, polyphenols, pigments, enzymes and
wax particles. However, numerous studies have shown success with
commercial kits aimed for DNA isolation from plants or food products
(Chiara et al., 2021; Hawkins et al., 2015; Khansaritoreh et al., 2020). DNA
extraction from sugar syrups have the further issue of being highly
processed causing high DNA fragmentation and potentially reducing the
quantity of target DNA in the sample. Furthermore, they may be added to
honey samples in only small amounts, decreasing even more the residual
syrup DNA content in the sample. One further challenge is how to assess
the quality and quantity of DNA extracted from the sample, as there can be
multiple types of DNA (plant, animal, microbial) present in one sample. This
means that typical spectrophotometer measurements (such as nanodrop)
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of the DNA will represent the total DNA of all types, as opposed to just
the DNA type of interest, hence this can be an inaccurate way of assessing
the success of the expected plant DNA extraction from a food product In
this study, a conserved plant marker was used as a means of evaluating
the DNA extractions in terms of plant DNA yield. The primer targeting
the trnL P6 loop was shown to perform excellently on highly degraded
DNA, due to its short amplification product (10-143bp), and had displayed
100% amplification success in a food dataset including rice, corn and beet,
making it a highly appropriate marker for this study (Taberlet et al., 2007).
Moreover, the trnL P6 marker has already been used in studies exploring
the diversity of plants in honey samples with metabarcoding of the region,
but has yet to be applied to sugar syrup adulteration detection (Chiara et
al., 2021; Valentini et al., 2010).

This study found that the Nucleospin Food kit produced syrup extracts
with a higher yield of plant DNA compared to the DNeasy Plant Pro Kkit.
Similarly, Sobrino-Gregorio et al. (2019) found that the NucleoSpin Food
kit provided high quality DNA extractions from rice molasses. Although the
DNA extraction method proved to be successful for all the sugar syrup
samples, in case of a pure honey sample (H15),three of the 5% rice syrup
spiked honey samples (HO4, H10 and H15) and one commercial honey
(CH1) there was no amplification with the trnL_P6, suggesting that no plant
DNA was present in the sample or the extraction itself was not suitable
for these samples (extraction repeated three times with no success). For
this reason, these samples were excluded from the analysis, as a more
optimised DNA extraction may be required to remove PCR inhibitors or
increase the DNA yield in these samples.

6.3. DNA marker amplification in sugar syrups

The amplification of the specific DNA markers varied greatly amongst the
different types of rice syrups, with some samples amplifying the target
marker weakly (R7). For syrups R1, R2, R4, and R5 the amplification of the
trnL_P6 plant marker and the target rice marker had similar Cq values,
amplifying within 3 cycles of each other, suggesting that rice was the main
component of the syrup. But there were some samples with discrepancies
between the amplification of the plant marker and the species-specific
marker, for example in R3 the trnL_P6 amplified with a Cq of 26.42, but the
rice_rrn26 marker amplified later with a Cq of 34.02. Similar patterns were
seen with R6 (Cq 27.81 and 33.8) and R7 (Cq 26.78 and 37.32), suggesting
that the amount of rice target in the sample was much less than the
amount of total plant DNA. Although this could be due to the rice_rrn26
primer target sequence becoming degraded in the sample, it could indicate
that the syrups themselves are not authentic. However, it could also be
that different rice varieties were used to prepare the syrup, possessing
sequence differences at the target site, as the specificity test was only
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performed with one rice line. This inconsistent pattern was also seen with
the beet syrup extracts which didn't amplify the target marker, while there
was undoubtedly plant DNA in the sample due to the positive trnL_P6
amplification, nonetheless this could not be attributed to sugar beet DNA
using the gPCR test.

We were unable to achieve sufficient amplification of the sugar beet
markers in the sugar beet syrup extracts, even though the markers had
shown significant amplification in the sugar beet plant control. Similar
results have been obtained for sugar products derived from sugar beet,
where Oguchi et al. (2009) suggested that sugar beet DNA had degraded
during the early stage of sugar processing as specific markers beet017 and
beet02 (included in this study) were amplified in sugar beet juice, but notin
subsequent sugar products (Oguchi et al., 2009). However, limited success
was seen with sugar cane products in a study by Wang et al. (2020), who
found that DNA was present in low amounts in extracts prepared from
sugar cane molasses, refined syrup and crystalised sugar samples with the
PCR product amplified in all but one of the sugar extracts (Wang et al.,
2020). Thus, the positive amplification obtained for the trnL_P6 for all the
sugar beet syrups tested in this study should be further investigated to
confirm the success of the extraction protocol, which could be done by
performing amplicon sequencing of this marker. This method could also be
used to identify the plant origin of the unknown syrup samples (S1 and S2),
as neither the rice nor sugar beet marker were strongly amplified in these
samples.

6.4. Amplification of rice marker in natural and
adulterated honey

The rice_rrn26 marker was tested for amplification in syrup spiked honey
and was positively amplified at all concentrations tested including the 1%
spike. The sensitivity of this test is higher than other studies obtained with
similar methods: 2-5% and =10% for rice and corn respectively Truong
et al., 2022), which is likely due to the specific plastid markers used in
our work. Low marker amplification was seen in the pure honey, but it
is reasonable to expect that some rice DNA could be present in small
amounts in natural honey due to bee foraging or leftover winter bee feed
making its way into the honey. However, the observed background
amplification in natural honey samples could also be due to non-specific
binding of the marker, which could be reduced by exploring a TagMan
probe-based approach to amplification to increase marker specificity, if
appropriate.

For this reason, we tested 17 different UK honey types to assess what
background amplification of the rice_rrn26 marker could be expected in
natural honey. These results were used to create a threshold where the
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sample is identified as adulterated or natural. This threshold was
developed using the standardised Cq values obtained from applying a
single threshold with baseline subtraction, to account for differences in
instrument response between runs and allowing some comparability
between the results. When the threshold was applied to the same honey
types spiked with 5% rice syrup (R1), 100% of samples were classified
correctly as adulterated, proving the success of the method for this type
of rice syrup. However, this has not yet been tried with other types of rice
syrup, as if the syrup itself displayed a low amplification of target DNA it
may not pass the threshold, as it was the case of R7 where even the pure
syrup would not be flagged as an adulterant based on the amplification of
the rice_rrn26 marker. Additionally, the thresholds developed for this study
were calculated using a small sample set of 17 honeys. So, further work
may be needed to build up a database of reference honeys to generate
a greater understanding of the expected background amplification.
Therefore, the right threshold with appropriate control amplifications is
vital to prevent natural honey being wrongly classified as adulterated.
Additionally, the honey types tested in this study were premium honeys
obtained from UK beekeepers, therefore not an accurate representation of
the UK honey market - which consists mostly of imported honey blends.
However, the honeys used in this study were an appropriate
representation of the many different floral sources present in the UK over
multiple seasons, therefore a good interpretation of potential non-specific
amplification of the markers was permitted with the natural plant sources
in UK honey. The described method would require further development,
optimisation and validation to reach a standard which could be
transferrable as a harmonised protocol. In addition, the method should
next be tested on honeys from different countries, and honeys which
are more representative of the UK honey market. Furthermore, samples
should be taken from countries where rice has a major part in the
agricultural system, to determine if the threshold developed in this study is
suitable for non-UK honeys.

6.5. Commercial samples

The proposed gqPCR method was tested on commercial samples of UK
origin purchased from the UK market, the samples were marketed as
English (CH1, CH4) or Scottish (CH2, CH3) and therefore were suitable for
the test as developed for UK origin honeys. The DNA extraction method
was suitable for 3 out of 4 of the selected commercial honey samples,
with the three successful samples showing good amplification of the plant
DNA marker. For one sample (CH1) there was no amplification of the plant
marker used as a positive control, suggesting that the extraction protocol
was not suitable for this honey. This sample was therefore not analysed
for amplification of the rice marker. The rice marker was not amplified
in any of the commercial honey samples, suggesting that no rice DNA
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was present in these honeys. Applying the method to commercial honey
samples highlighted the importance of including the trnL P6 plant control
marker to check the presence of plant DNA in the extract, to verify whether
the negative amplification of the adulterant marker was truly negative or
just due to an insufficient DNA extraction.

6.6. Combination with traditional methods

Typically, for honey authentication, a weight of evidence or evaluative
reporting approach should be taken, given the known complexities of
honey analysis (Walker et al., 2022b). This implies that a single atypical
result should trigger further investigations, with multiple different analyses
being used to add to the elements of evidence before a final decision about
product non-compliance is made. For this reason, we used traditional
sugar composition analysis (HPLC) alongside the DNA results. Of the pure
honeys, only one sample (H11, heather honey) was flagged as non-
compliant by HPLC for having a sugar (fructose + glucose) content of lower
than 60 g/100g, which would trigger further analyses. However, this failure
was marginal at only 0.36 g/100g under the limit when taking the Cl into
account. The DNA results for the rice marker in this sample was negative,
providing contrasting evidence that the sample was not adulterated with
rice syrup. In this case, the sample could be subjected to further tests
to confirm the purity of the honey sample, as the dual analyses were
not in agreement. The HPLC results for the commercial honey samples
were compliant with legislation, which was in line with the DNA analysis
suggesting that the samples were not suspicious of adulteration with rice
syrup. The rice syrup spiked honey samples were all flagged as
noncompliant for total fructose and glucose content using HPLC. This was
further confirmed by the DNA results, showing amplification of the rice
marker over the natural threshold in UK honey (Figure 8, Table 12). In
addition, the maltose concentrations for the 10% spiked honey samples
were elevated compared to the pure honeys, which could also be taken
into account despite no official limits currently existing for maltose in
honey. Hence, for the adulterated samples there would be a growing
weight of evidence suggesting non-compliance by the outcomes from
these two analyses. Furthermore, the DNA results could be used to
determine the type of syrup added, which could assist in deciding which
further tests to carry out, e.g. for presence of the AFGP rice marker. The
proposed DNA method has great potential to be used alongside traditional
honey analysis, modern analytical methodologies, and rapid spectroscopic
screening tests as a highly sensitive method to identify the species origin
of certain plant-based syrups and help confirm fraudulent practices.
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6.7. Predictive Modelling for Honey
Adulteration using SORS

In this proof-of-concept study we successfully employed through-container
SORS measurements coupled with machine learning predictive modelling
to achieve non-invasive detection of exogenous sugar adulteration in UK
honeys. Different levels of adulteration, between 10- 50%, were employed
to train various machine learning algorithms, including PLSDA, RF and
XGBoost. The syrups used for adulteration were rice and sugar beet as
thesesyrups are derived from C3 plants, which are not easily detected with
existing methods. Thus, it is important to develop methods targeting these
sources of exogenous sugars

The results revealed that SORS successfully differentiated honeys from
plant-based syrups according to their spectral fingerprint. Moreover, the
majority of honey samples had a similar biochemical profile, mainly
characterised by the presence of fructose and glucose, with the exception
of three honey types (heather, ivy, and buckwheat), which were positioned
away from the main cluster of pure honeys in the PCA plot (Figure 9) This
difference could be attributed to biochemical differences, as indicated by
their colour differences and characteristic SORS signals. Indeed, the 14
honeys in the main cluster were all white—light—amber-coloured honeys,
while the other 3 honeys (heather, ivy, and buckwheat) ranged between
amber and a dark amber colour, resulting in higher intensity SORS signals
as well as strong fluorescence interference (Figure A 1 (Appendices)).

Classification models built with the RF algorithm consistently
outperformed alternative algorithms, exhibiting misclassification rates of
1.10% for pure honey misclassified as adulterated and 2.0% to 2.6% for
adulterated honey misclassified as pure (hard misclassifications). The total
misclassification rates ranged from 13.6% to 15.9%. Conversely, XGBoost
displayed higher misclassification rates, ranging from 7.7% to 9.9% for
pure honey and an overall misclassification rate of approximately 23.9%
to 31%. The utilization of XGBoost was motivated by its ability to provide
probability-based results for each adulteration class (refer to example in
Table A2). However, its performance was less than that of RF despite both
being decision tree-based ensemble algorithms. A defining difference was
the fact that XGBoost employs regularisation to avoid weight overinflation
to reduce the risk of overfitting. Indeed, the final XGBoost models following
the training and optimisation process only contained 79 features out of
the 670 original features. RF in contrast builds hundreds of trees using
different combinations of training samples and features for each of the
trees, therefore minimising the risk of overfitting without eliminating
features. In fact, our efforts to reduce the feature space prior to
performing RF model training were less successful compared to employing
the whole feature space as described in Section 5.5.4, possibly indicating
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the presence of complex interactions between features in the SORS
spectra. Other studies on honey authenticity have compared the
performance of several machine learning algorithms, with both RF and
XGBoost reaching similar performances. XGBoost exhibited 90% accuracy
in discriminating between monofloral Spanish honeys of different
botanical origins based on honey physicochemical parameters as
compared to 83% accuracy for RF (Mateo et al., 2021). In another study
employing hyperspectral imaging to study adulteration detection in
Pakistani honeys, RF had superior performance in identifying both the
botanical origin and adulteration level, reaching a maximum prediction
accuracy of 99.69%, while XGBoost attained similar levels of performance
(Shafiee et al., 2016).

In addition to its increased performance, another advantage of using RF
was that it provides a variable importance matrix ranking the features in
order of their impact in the model’s prediction accuracy. The wavelengths
of highest importance for the different rice syrup models ranged between
860 to 890 cm™! and 920 to 950 cm™'. These wavelengths correspond
to two peaks characteristic of maltose which were also present in rice-
syrup showing that the algorithm correctly identified maltose as the sugar
responsible for differentiating between natural honey and honey
adulterated with rice syrup. Hu et al. (2022) have also identified two Raman
peaks at 865 and 915 cm™' among the most important features for
identification of maltose syrup adulteration of native Suichang Chinese
honey which indicate the presence of C-H and C-H and C-OH bond bending
vibrations. The regression models for rice syrup adulteration also showed
that the wavenumbers around 865 cm™ contributed more than 50% to the
prediction of adulteration level (Figure A 9 (Appendices))

The bands responsible for the prediction accuracy of the RF sugar beet
models, ranged between 700 to 850 cm™!. The band around 706 cm! has
been previously associated with C-O stretching and C-C-C-O and O-C-O
bending vibrations of glucose (Aykas et al., 2020). The area around 830
cm! also coincided with a dominant peak in the sucrose SORS spectrum
and is in agreement with previous observations by Mosca et al. (2023).
The SORS results were further validated by HPLC analysis which revealed
distinctive sugar profiles for rice and sugar beet syrups, with the rice syrup
predominantly consisting of glucose and maltose, while the sugar beet
syrup predominantly contained sucrose, glucose and fructose.

RF was further used to develop a classification model with the aim of
discerning the type of sugar syrup used for adulteration, as well as
predicting the level of adulteration. This model also exhibited high success
rate with only 1.10% of pure samples misclassified as adulterated and
3.64% of adulterated samples misclassified as pure. In addition, it had only
2.2% to 4.9% misclassification in the type of syrup. The fact that this model

FSA Research and Evidence

48



Developing a New Testing Methodology for Honey Authentication

was able to also identify the type of adulteration successfully was of high
importance, as it showcases that SORS accurately captures differences in
chemical composition between different syrup types and honeys. Figure A
9 (Appendices) shows the most important variables enabling the predictive
models to detect the type and percentage of adulteration. The bands
with the highest importance range between 700 and 950 cm!, which
encompasses the important variables previously identified for the
individual rice and sugar beet classification models. In addition, a band
around 1127 cm™! has previously been suggested to be arising from a
combination of stretching vibration of C-O bond (major) and vibration of
C-N bond of protein and amino acids (minor), while the band around 1264
cm~1 has been associated with the vibration of C(6)-OH and C(1)-OH bonds
(S. Li etal., 2012).

While previous studies have shown promising results of employing Raman
spectroscopy to identify honey adulteration with sugar syrups, they are
not able to specify the type of sugar syrup used for adulteration (Mosca
et al., 2023) and in some cases they show poor performance compared
to individual models (S. Li et al., 2012). In contrast, the SORS methodology
exhibited high discriminatory capacity with potential applications in testing
unknown honey samples in non-controlled commercial setting where the
type of adulterant would be unknown.

Similar to the results observed for classification purposes, the regression
models employing RF regression methods demonstrated very low RMSE
values, around 3.7, for both rice and sugar beet syrups, with SDs of 1.67
and 1.09, respectively. These results demonstrate the efficacy of these
models in predicting adulteration levels and adding a valuable quantitative
dimension to the study.

Finally, as shown in the present study the majority of pure honey types
in the UK had a similar metabolic fingerprint which allowed us to group
them together in a single model. Additionally, individual models could be
constructed in the future to characterise more diverse types of honey with
unique fingerprints, such as heather, ivy and buckwheat.

This study emphasises the potential of SORS and machine learning as
a cost-effective and rapid method for honey authentication. Deployment
of SORS in the field and through-container analysis offers practical
applications for adulteration detection and quality monitoring in the honey
supply chain. Future research is recommended to refine models, reduce
misclassifications, and broaden the study to encompass a diverse range of
commercial honey types.

Furthermore, the two orthogonal methodologies proposed in the study
can be used in conjunction in the future, with SORS employed as rapid
screening method at various stages in the supply chain and suspicious
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samples can be further tested with the PCR-based DNA barcoding method
described earlier. In addition, SORS exhibited quantitative potential
showing that the proposed new methodology could be used both for
qualitative analysis to detect the presence/absence of adulterant but also
to quantify the percentage of adulteration. This approach could be further
extended to imported honeys, which constitute the majority of honey
available in the UK market (Garcia, 2018), by constructing databases with
commercially relevant samples.

In conclusion, the results of this study demonstrate the potential of SORS
and DNA barcoding methods to be applied for the authentication of UK
honey samples and adulteration detection. The combination of the above
techniques could result in a highly accurate and fast method for honey
quality control deployable in field. This will support the local beekeeping
sector and provide importers and policymakers with an important tool
for tackling fraud in the honey industry. Furthermore, it could alleviate
consumer concerns around the purity and authenticity of honey products
on the market and provide assurance of honey quality and purity.
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