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Glossary and Abbreviations

o

cfu
DMFit

IFR
NaCl
VB6

Dimensionless quantity between 0 and 1 that describes
the physiological state of spores in the Baranyi equation
(see Appendix 1 for further details)

Colony forming unit

Dynamic Modelling and Fitting (see
http://www.ifr.ac.uk/safety/DMFit ); a Microsoft Excel
Add-In developed at IFR to fit sigmoid curves.

Institute of Food Research

Sodium chloride (salt)

Microsoft Visual Basic 6.0 programming platform
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Executive Summary

Background
In 2003, the Food Standards Agency and the Institute of Food Research from the

United Kingdom and the USDA Agricultural Research Service and its Eastern
Regional Research Centre from the United States signed a Concordat to collaborate in
the development and maintenance of an Internet-based system called ComBase
(www.combase.cc). The system allows users to browse through publicly available
data on microbial responses to the food environment and provides software tools to
analyse those data. The aim of the initiative is to provide food manufacturers,
regulatory officers, risk assessors and food microbiology researchers around the world
a common and internationally recognised pool of data and software to predict
microbial responses to changes in food composition, manufacturing and storage. The
Australian Food Safety Centre of Excellence joined the initiative in February 2006, in
which year a new Concordat was signed.

Since then, ComBase has become the largest and most significant food microbiology
database in the world, storing quantified microbial responses to the food environment.
It contains data from (UK and US) government-funded research, as well as data from
the literature and data-donating laboratories. It is supplied with programs that helps
users to navigate and search in the database and predictive packages based on the
stored raw data. The project has attracted great international acknowledgement,
shown by many invitation around the world to hold workshops on its use, and data
donated by many laboratories as contributions to a common goal.

The Combase web site is hosted by the Institute of Food Research (IFR), Norwich,
UK. It is a hub that directs user enquiries to

(1) the actual raw data and the software navigating in the database;

(2) software tools on how to use the information in the database.

IFR has been responsible for the quality assurance of the data accumulated, and the
development of the predictive software, both in terms of modelling and programming.
ERRC has produced the software navigating in the database. A ComBase Executive
Committee was established with yearly meetings to assist the development of the
structure, function and dissemination of the initiative.

Rationale and Objectives

In this project, an internet-based platform has been developed to replace the
former MAFF-funded Food MicroModel as a package integrating a much
bigger database and much more sophisticated predictive modelling tools.
Its easy availability and use increased the users’ knowledge and confidence
in predictive microbiology and contributes to improve food safety.

The objectives of this project were:

1. Enter available data in ComBase continuously.

2. Further develop and provide Technical Support to the predictive software Growth
Predictor.

3. Unify four groups of publicly available datasets (FSA, ARS, EU, and Literature) to
develop predictive models of growth and survival.

4. Create the ComBase web site at IFR and link it with relevant pages of FSA and
other partners.
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5. In collaboration with USDA-ARS ERRC, develop ComBase-PMP: a Combined
Database and Predictive Modelling Program integrating browsing and predictive
facilities in a single package.

Outcome/Key Results Obtained

- Growth Predictor version 2 has been launched, with improvements based on users’
suggestions.

Remark: This was a stand-alone version of the predictive growth models formerly
developed. However, in agreement with the FSA, the stand-alone platform was not
pursued further. The technical help for installation was very time-consuming and a
web-based predictor (ComBase Predictor) was developed instead, which is now
available via the ComBase Modelling Toolbox link of the www.combase.cc web site.

- The ComBase website is linked with FSA and other partner sites, to make it easier
for users to find the information most suitable to their enquiry.

- Data from European partners have been incorporated into ComBase. This was also
supported by a 2-yrs project from the EU. Currently we host ca 37,000 records, and
the majority of the records are full logcount curves From literature, we also put data in
Combase when it represented only a growth or death rate as a response to the
environment in question. Ca 2,000 records are not on the Internet yet since they were
observed in dynamic environment and the ComBase Browser is not able to display
dynamic environment yet.

- Using all available data (FSA, ARS, EU and literature), predictive models of growth
and survival have been developed (see technical report).

- ComBase-PMP: Combined Database and Predictive Modelling Program stand-alone
version was developed and made available to data donors.

Remark: By July 2006, the predictive microbiology research group at the US partner
has become smaller and smaller. After departure of key expertise, its leader, Dr Mark
Tamplin also left and sadly the programmer of their flagship predictive software, the
Pathogen Modelling Program, died. Currently there is no prospect for PMP to be
developed further and the ComBase-PMP association is not possible anymore.
Therefore we omitted the reference to PMP from the integrated web-version and it has
become ComBase Modelling Toolbox. This package consists of

(1) ComBase Predictor representing generic (i.e. based on microbial curves in broth
with optimal medium) growth, non-thermal survival and thermal inactivation models,
applicable also under fluctuating temperature;

(i1) A scenario-specific dynamic predictor, the Perfringens Predictor to model the
growth of Clostridium perfringens during the cooling of beef.

(i11) The web-version of DMFit, which fits sigmoid curves to "log cfu vs. time"
bacterial growth data.

(iv) A help system and a manual have been made freely available via the internet on
the use of the above packages.

(v) ca 30 invited ComBase workshops have been held around the world.

What it means and why it is important
Similarly to genomic databases (gene banks), ComBase serves as a repository for data
that can be accessed by users seeking to estimate microbial responses to various food
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environments. However, even if all publicly available data are really also accessible
(the role of ComBase Browser) it is not evident how to use the data. The Integrated
ComBase environment, now also including the ComBase Modelling Toolbox, gives
invaluable help, ideas, guide and examples how to process the data, which will have
obvious and positive implications on the standardisation of the work of food
microbiology laboratories international risk assessors, researchers and regulatory
officers.



Section One: Objectives of the project

Objective 1. Launch Growth Predictor version 2.

Version 2 was launched with improvements based on users’ suggestions.

However, in agreement with FSA, this tool was not developed further. Growth
Predictor was a stand-alone version of the predictive growth models formerly
developed in the MicroBase project with FSA. This stand-alone platform required a
lot of technical help when users installed it, and a web-based predictor (ComBase
Predictor) was developed instead, which is now available via the ComBase Modelling
Toolbox link of the www.combase.cc web site.

- Objective 2. Develop an integrated web environment with links to FSA and
other partner sites.

The www.combase.cc address is today the most frequently visited web site at IFR,
getting hundreds of world-wide hits every day (excluding automated search engines
like Yahoo, Google, etc). It is a hub of Knowledge Transfer making it easier for users
to find the information most suitable to their enquiry.

- Objective 3. Incorporate data from supporting partners into ComBase.

This was also supported by a 2-yrs project from the EU. Currently ComBase hosts ca
37,000 records, and the majority of the records are full logcount curves. From
literature, we also put data in Combase when it represented only a growth or death
rate as a response to the environment; these represent some 5,000 records. Ca 2,000
records are not on the Internet yet since they were observed in dynamic environment
and the ComBase Browser is not able to display dynamic environment yet.

- Objective 4. Use all available data (FSA, ARS, EU, Literature), predictive
models of growth and survival.

ComBase-PMP: Combined Database and Predictive Modelling Program stand-alone
version was developed and made available to data donors.

Remark: By July 2006, the predictive microbiology research group at the US partner
has become smaller and smaller. After departure of key expertise, its leader, Dr Mark
Tamplin also left and sadly the programmer of their flagship predictive software, the
Pathogen Modelling Program, died. Currently there is no prospect for PMP to be
developed further and the ComBase-PMP association is not possible anymore.
Therefore we omitted the reference to PMP from the integrated web-version and it has
become ComBase Modelling Toolbox. This package consists of

(1) ComBase Predictor representing generic (i.e. based on microbial curves in broth
with optimal medium) growth, non-thermal survival and thermal inactivation models,
applicable also under fluctuating temperature;

(i1) A scenario-specific dynamic predictor, the Perfringens Predictor to model the
growth of Clostridium perfringens during the cooling of beef.

(i11) The web-version of DMFit, which fits sigmoid curves to "log cfu vs. time"
bacterial growth data.

(iv) A help system and a manual have been made freely available via the internet on
the use of the above packages.

Below we give details of these objectives. Most results are summarised in the user
manual on a CD enclosed to this report; we don’t repeat those here.
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Section Two: Objective 1. Launch Growth Predictor version 2

Growth Predictor version 1 was sent to users (Unilever, US and UK food consultants)
and based on their suggestions, some modifications were devised to make it more
user-friendly. Its Version 2 is now available at
http://www.ifr.ac.uk/Safety/GrowthPredictor/

and also it is enclosed to this report on a CD. However, still many problems have
remained with its installation. It was written in Visual Basic 6.0 and it needed the
MSCHART.OCX file that is a standard Windows system file but, by default, not part
of the installation. Therefore, if the user did not have administrator right, he/she could
not install it, even if we enclosed it in the installation package. Another problem was
that Visual Basic 6 was not supported anymore, but upgraded to Visual Studio, but the
migration was far from seamless. Even today we have difficulties to modify VB6
programs in Visual Studio.

Therefore, in 2005, we agreed with the FSA project officer (Geraldine Hoad) that we
don’t develop the final product in VB6 but in .Net (dotNet). This means that the user
can get prediction only via the internet. This may make it less attractive feature for
those who has no or slow internet connection but this is only question of time when
Internet will be common and fast. On the other hand, in the long run, we won’t have
installation problem anymore, all upgrade can be done on the server

As a result, the web-based ComBase Predictor was developed instead, which is now
available via the ComBase Modelling Toolbox link of the www.combase.cc web site.
The user manual of the program and the program itself is on the CD enclosed to this
report.
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Fig. 1. Example screens from Growth Predictor and ComBase Predictor, describing
the growth for Aderomonas hydrophila at the default conditions (temperature 20 C, pH
7, NaCl 0.5%).
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Section Three: Objective 2. Develop an integrated web environment with links
to FSA and other partner sites

Combase, www.combase.cc has become a predictive microbiology knowledge
transfer hub with hundreds of world-wide hits every. Fig. 2, shows the available main
submenu points:

Browser — Where users can access more than 35 thousand datasets describing the
microbial response to a specific environment;

Submit data — Where procedures for data donations are explained (note that ca 20%
of all data was received this way;

ComBase Predictor — This menu point will be replaced by the more general
ComBase Modelling Toolbox, where users can access ComBase Predictor, as a
generic package; Perfingens Predictor, as a (food-hazard) scenario-specific
tool; DMFit as a modelling tool. The list should continue further in the future.

Support — Various documents to help the user’s enquiry;

Training — Where users can get information from training opportunities. (ca 30
ComBase workshops were held worldwide, funded by the hosts; most of
them overbooked).

FAQ — Frequently Asked Questions (and answers)

About — Basic information on Combase

Links — Useful links to the members of the ComBase Partnership (FSA, among
them) and twin organisations.

The best demonstration of the power of the hub is trying it on the Internet.

10
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A COMEBINED DATABASE FOR PREDICTIVE MICROBIOLOGY

HOME
[ comBASE FEATURES

WELCOME TO COMBASE

The ComBase Initiative is a collaboration between the Food Standards Agency and the
Institute of Food Research fram the United Kingdom; the USDA Agricultural Hesearch
Serice and its Eastern Fegional Research Center frorm the United States; and the
Australian Food Safety Centre of Excellence.

Its purpose is to make data and predictive tools on microbial responses to food
environments freely available via web-based software. The ComBase Database
{accessible via the ComBase Browser) consists of thousands of microbial growth and
survival curves that have been collated in research establishments and from publications.
They form the basis for numerous microbial models presented in ComBase Predictor, a
useful tool for industry, academia and regulatory agencies. They can be used in
developing new food technologies while maintaining food safety; in teaching and research;
in assessing the microbial risk in foods or setting up new guidelines.

FOOD
USDA s % STANDARDS
— ABENGY

US DEPARTMENT OF AGRICULTURE »
AGRICULTURAL RESEARCH SERVICE
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ComBase is a database that contains information about how microorganisms respond to
different enwironments. The information in ComBase is referred to as "quantitative
microbiological” data since it describes how levels of microorganisms, both spoilage
organisms and pathogens, change over the course of time.

The prirmary goal of the ComBase consortium is to improve efficiency in locating specific
microbiological information, provide a more rapid means to compare data from different
laboratories, and to reduce unnecessary redundancy in conducting microbiological
studies.
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Fig. 3. The new ComBase Modelling Toolbox will host many useful software tools,
not only ComBase Predictor.

ComBase Modelling Toolbox

New! ComBase Predictor is now accessible from the ComBase Modelling Toolbox,
a set of applications for the prediction of response of microerganisms to different
envirenments. Click here for more information about the ComBase Modelling
Toolbox.

If you have previously registered with ComBase Predictor, you do not need to
register again to the ComBase Modelling Toolbox. Simply use the details of your
registration with ComBase Predictor to access ComBase Predictor and other tools

from the ComBase Modelling Toolbox.

Your Email address |
YourPassword |

T Important!
I have read and accepted the terms and conditions for using the
ComBase Modelling Toolbox.(Please click checkbox to continue)

Every care has been taken in the design of the models, their validation and
implementation. However, the implementation of microbiological predictions from
the ComBase Modelling Toolbox requires expert interpretation and you are
responsible for ensuring that you have the necessary skill and expertise. Where
you do not have such skill and expertise you should consult an expert in food
microbiology.
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Section Four: Objective 3. Incorporate data from supporting partners into
ComBase

During the project, the amount of data stored in ComBase increased by more than
50% and currently it has ca 37 thousand records, though from these only 35 thousand
are available since the remaining were generated under dynamic conditions (mostly in
fluctuating temperature) and the current browser is not able to accommodate that
situation yet. The majority of the records are full logcount curves. From literature,
we also put data in Combase when it represented only a growth or death rate as a
response to the environment; these represent some 5,000 records.

The most significant data donors were:

Institution Contribution

Dept. Food Micro.; Univ. Cordoba, Listeria in vegetables; ca. 500 rec.
Spain

Dept of Ind. Microbiol., Univ. OD-derived rates of spoilage organisms;

Complutense ca 1000 rec.

Budapest University, Hungary. Listeria growth in presence of LAB;
ca 50 rec.

Dpt Nutr. y Brom. III. Pathogens, spoilage; mainly in MA; viable

Univ.Complutense, Spain count curves and doubling times, by OD;
ca 2000 rec.

Danish Institute of Fisheries Research Spoilage organisms in broth and seafood;
ca 200 rec.

INRA, Avignon. France Growth and survival of various pathogens;
ca 400 rec.

Agricultural University of Athens. Spoilage organisms, mainly in olives;

Greece ca 2000 rec.

Technical University of Bratislava, =~ Pathogens and spoilage, in broth and milk

Slovakia ca 50 rec.

Public Health Laboratory Services -  Pathogens at low water activity;

UK ca 100 rec.

Metropolitan University. London UK Spoilage organisms in broth and food;
ca 500 rec.

University of Reading. UK Pathogens in broth, inactivation and

survival; ca 100 rec.
Unilever Research Sharnbrook. UK Pathogens in food; ca 200 rec.
Campden and Chorlywood FRA. UK Spoilage organisms; ca 500 rec.

TNO, Holland Lactic acid bacteria in broth and food;
ca 500 rec.

Veterinary University of Viennna, Spoilage organisms in broth and food;

Austria ca 200 rec.

Instituto Zooprfilatico Sperimentale  In cheese and salami; ca 1500 rec.
Brescia, Italy

These partners have received the full dataset on a CD, accompanied by validation and
modelling tools developed at IFR.

13



Also, if workshop participants requested the full database, they got the same CD.
Those who got the full version, were asked to sign a document saying that the data
will not be used for commercial purposes.

Section Five: Objective 4. Use all available data (FSA, ARS, EU, Literature),
predictive models of growth and survival

This was the main objective of the project. Originally it was planned by the USDA-
ARS-ERRC partner, that the product will be named as ComBase-PMP: Combined
Database and Predictive Modelling Program. The second part of the name was

used to keep the PMP abbreviation that had gained an established image in the US.
However, by July 2006, the predictive microbiology research group at the US partner
has lost its key members and no replacement has been made. The result is that their
product the stand alone package PMP was not been developed further and the PMP
has been loosing its reputation these days. This is why we agrees that we just keep the
name Combase, even if it is actually not only a database. From the ComBase hub
(www.combase.cc) there are two major links: the actual database, accessible by the
Combase Browser (developed and hosted by the US partner), and the Modelling
Toolbox (developed in this project at IFR) containing more and more (currently three)
software to analyse the data. Until approval, the Modelling Toolbox can be tested at
http://ifrsvwwwdev/maftest/ComBasePredictor/Login.aspx?ReturnUrl=%2fmaftest
%2fComBasePredictor%?2fDefault.aspx

A stand-alone integrated database + predictor was also developed and made
available to data donors of the project. This can be found on the CD enclosed to this
report (CBP.EXE).

The ComBase database is now accessible via a new user interface of USDA-ARS
ERRC. Its main advantage is the more advanced query functionality (Fig 4.)

Fig. 4 Search in the ComBase database.

Home Contact us

CO r]?@ ase A COMBINED DATABASE FOR PREDICTIVE MICROBIOLOGY

Browser HOME * Browser Home * Search Options ® Search

Predictor Select Search Criteria Search by Somr

Please select search terms and define ranges for temperature, pH, and either water activity or MaCl (the two are linked by assuming MaCl solution in
water)

\mBase Search Criteria Retrieved records: 22 Matches
= I Food Type f
| ¥ Besf (2519) . Comblnfed
0 DATAy, § Matching with
‘ff,..c I Bread (z36) Selection Records  Previoug
% | [T Cheese (5400
@ase ¥ Cubure medium (22084) All records 35146 3514%
& T Dessert Food (258) Food type 24603 24650
2 T Egaor egg produck (457) Organism 4145 3324
m‘-‘-'awp 3 [T Infant_food (203) Temperature 12542 753
[T luice, beverage (118) nH 33170 7oy
[T Milk (1103)
[T Gther or unknawn bype of dairy (515) :'\;:tviry 34683 709
[T other or unknown type of meat (S10) Conditions 1965 2
[T Other, mixed, uncategorised or unknown type of Food {1233)
T Pork (1254) View Summary View Details
T Faulry (1331) Download to CSV
[ Sauce/Dressing (76}
[ Sausage (500)
[T Seafood (983)
i ... [ Wegetable or fruit and their products (911}
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When the users select the dataset they are interested in, they can see an overview of
the selection, and they can browse them one by one as shown in Fig. 5.

A major new feature here, that the measured curve can be analysed right on the spot.
This was developed at IFR in this project and represents one of the most powerful and
popular functionalities of ComBase.

Namely, the displayed curve can be either fitted (Fig. 6) by the model of Baranyi and
Roberts (which is the most commonly used primary model, also programmed in
DMFit) or can be compared with the predicted curve (Fig. 7) generated by the
ComBase Predictor. The difference between the observed and predicted curve gives a
visualisation of the performance of the predicted models and increases the confidence
it their use. These features are increasingly used in higher education and training,
mainly to demonstrate the meaning of ‘safe’ estimations (the predictions are based on
pure culture measurements in broth with optimum media, therefore they are generally
overestimate the observations in common food).

Fig. 5 Displaying a specific record from ComBase. The query of the user (see Fig 4)
resulted in 366 records, from which the plot shows the details of the 20™". The curve
can be fitted and compared with predictions by using the circled links (see Fig. 6).

First] Back 10 | Previous| Next | Forward 10 | Last | [20/366 matches] Download B302_109 10 CEY
Record Details ComBase ID = B302_109 Record Data
Organism Escharichia coll 10 Time (h) log celllg
Food type: Culture medium (In: broth) " ema" 0.oo 3.840
Temperature: 10 = 8 = 13.92 3.440
pH: 69 ; am 2278 3.580
Water activity: 0.986 (assurmed) = d - 4477 3570
NaCl: 25 % B s s 70.00 4240
Maxirmum Rate See data E . 9510 4.400
(log1B(CFU/h)) 5 2 119.73 5120
Conditions: 13823 5.470
Carbon-dioxide in the emvironment(%):60, Sodium chloride in the ;I 0 162.80 G.R10
environment{%):2.5 0 100 200 300 187 52 5510
Time (h) )

M 83W

240 9260
[ WEED 8000
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46T G860
5 J7AE 9170

Compare with Prediction

Source:
Food Standards Agency funded data generated at Institute of Food Research, UK

Further Specifications:
Serotype(s): 0157:H7, Strain(s): NCTC12079 W2-2 805-B 204-P. Mixed_strains. Measurement by colony counts. =

=

Details:

Growth of Escherichia coll O157:H7 in presence of CO_2. Strains: MCTC 12079, W2-2, 505-8 and 204-P. Media:
Tryptone soya broth (CM129)Inocula: Crganisms were grown in 10 ml of medium overnight and subcultured twice
rore (a total of 3 passages). Cultures were mixed, diluted and added to the experirmental media (90 ml of broth
inoculated with 1 ml of inoculum prediluted to ca. 10% cfu/ml). Sterile membrane pads of 47 mm diameter were

L]

L«
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Fig. 6. The record selected from the Combase database (Fig. 5) can be fitted right on
the spot, by means of our new, web-based version of the DMFit curve fitting program.
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Fig. 7. The record selected from the Combase database can be compared with
predictions right on the spot. The predicted curves (with and without lag time) are
based on the same model that are used in ComBase Predictor.

ComBase ID B302 99 Microorganism Ezcherichia coli
Environmental conditions
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0 168 25 (09%6 |law | | | | | | |

Log counts Predictions lag | Predictions no lag

o.oo 3.SDd 0.00 3.30 = 0o.00 3.30 9=
15.37 3.58 0.00 3.30 0.00 3.30
42.70 3.46 g.10 3.31 8.10 3.47
69.03 4.37 16.21 3.32 16.21 3.64
115.658 5.21 Z24.31 3.35 24.31 3.81
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310.57 9.:22 72.94 3.71 72.9494 4.82
328.83 9.01 §1.04 3.83 §1.04 4.99
357.93 9.Z6 89.15 3.95 89.15 5.15
382.22 9.17 97.25 4.09 97.25 5.32
405.22 9.06 105.36 4.24 105.36 5.49
113.46 4.39 113.46 5.66
j 121.57 Q.SSj 121.57 5.83 j
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By ComBase Predictor, users can compare the growth / survival of four organisms,
and/ or under four different combinations of the environmental factors, as shown in
Figs 8 and 9:

Fig. 8. Growth of various organisms under the same conditions (temp 15°C, pH 7) in

three days.
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Predictions

time (h) conc. (LoglD cells/q)
a.oa .00 .00 3.00
oo J.00 J.00 3.00
.20 oo .01 .ao
.40 .oo .01 .01
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.80 .01 uk .02
.o .01 .04 .04
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.40 .05 .08 .08
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CFU/g

Logl

oo -1 oo o O
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Fig. 9. Effect of temperature on the growth of non-proteolytic C. botulinum at pH 6,
NaCl 1% .

Clostridium botulinum (non-prot.)

Phys.state T (°C) Dbl.time
[4-30] 1-7. h

0000037 | [EEIH 5 | . 2288 |
Clostridium botulinum (non-prot.)
itiall  Phys.state T(°C) A ‘ te  Dbltime
level <=7 [0-1] [4-30] .1-7. h

1 | Jooooos7 | IEEN 6 | _ 16.14

Clostridium botulinum (non-prot.)

1 0.000037 | TN 8 |

Predictions

time (h) conc. (Logl0 cells/g)
0.00 1.00 1.00 1.00
0.00 1.00 .00 1.00

.58 1.00 00 1.00

.16 1.00 .00 1.00
1.00 00 1.00
1.00 .00 1.00
1.00 00 1.01
1.00 .00 1.03
1.00 .00 1.1%
1.00 .00 1.30
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B N Y S O SO SO SO SO oY

400
Time [h]
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Major progress have been made in the extension of the models. Now, ComBase
Predictor can be used to estimate growth / inactivation curves under dynamically
changing temperature, too, as shown in Fig 10.

Fig. 10. S. aureus and E. coli under fluctuating temperatures at pH 5.9, NaCl 1.5%.
Temperature input TObs

[ 3
‘ O Static temperature ! ® Changing temperature ‘Time (h) }
| |

add a row

Staphylococcus aureus v
iti Phys.state T (°C) pH NaCl (%) Max.rate Dbl.time

evel <=7 [0-1] [7.5-30] [4.3-7.1] [0.0-13.5] (log.conc)h h

1 | [o.o04s049 | IEZEN | | 59 | 15 | | [

Escherichia coli with CO2(%) ‘d

niti Phys.state T (°C) pH NaCl (%) Max.rate  Dbltime

evel ==7 [0-1] [10-30] [4.5-71 [0.0-6.5]
0.049787 | [CEEN 59 [Wl15 |

remove last row

IInpnt vour temperature profile in the textbox below.

[10-30]
0 io0
20 10
20.5 i3
40 i3
40.5 10
Predict
Freg 0
time (h) Temp. (C)conc. (Logl0 cells/g) »~
0.00 10.00 1.00 1.00 =
0.81 10.00 1.00 1.00 0 20 40
1.62 10.00 1.00 1.00 Time (h)
2.42 10.00 1.00 1.00 3
3.23 10.00 1.00 1.01
4.04 10.00 1.01 1.01
4.85 10.00 1.01 1.01
5.66 10.00 1.01 1.01
6.46 10.00 1.01 1.01
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Also, thermal inactivation and non-thermal survival curves can be generated
according to new models created in the last year of the project (Fig. 11)

Fig.11. Thermal inactivation of B. cereus at temp 90°C, pH 7, NaCl 2.5%.

ComBase Predictor

Observation duration

Time () (500

add arow

Bacillus cereus

elative  Phys.state T (°C) pH NaCl (%) Max.rate D value
decrease  [0-1] [20-100] [4.5-7] [2.5-7.5] (log.conch) (L)
[FEZETEER Hele MIET [ 25 [ro7 [IEN

remove last row

Predictions

time (h) conc. (LoglD cells/q)
0.00 0.00

.00 0.00

18 -0.07

.36 -0.16

.54 -0.28

72 -0.41

.90 -0.56

og -0.7:2

H =R, OOOOQOoOoo

4
Time [h]

The models in ComBase Predictor are based on the data that are summarised in the
tables 1-3. Their mathematical background has been published and summarised in the
project report of a previous FSA-funded project.
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Table 1. Summary of raw datasets (observed “logcount v. time” curves) selected to
develop growth models. Initial datasets: observed growth curves used to generate the
growth models in the previous version of ComBase Predictor.

(3 factors”) (4th factor™)
Eé(;zn No. of No. of newly No. of :::‘;v?f
Growth curves in the included |curves in the includ)éd
initial set curves initial set
curves
lAeromonas hydrophila Yes 125 33 - -
Bacillus cereus with CO2(%) Yes 86 109 58 -
Bacillus licheniformis No 53 - - -
Bacillus subtilis No 68 - - -
Clostridium botulinum (non-prot.) No 52 - - -
Clostridium botulinum (prot.) No 77 - - -
Clostridium perfringens No 51 - - -
Escherichia coli with CO2(%) Yes 80 89 78 -
Listeria monocytogenes / innocua
with CO2(%) Yes 251 279 75 9
Li.steri_a _monocytogenes /innocua Yes 251 279 63 118
with nitrite(ppm)
L(steria monocytogenes /innocua Yes 251 279 129 }
with lactic(ppm)
L(steria monocytogenes /innocua Yes 251 279 52 )
with acetic(ppm)
Staphylococcus aureus No 93 - - -
salmonellae with CO2(%) Yes 146 113 23 -
salmonellae with nitrite(ppm) Yes 146 113 28 -
Shigella flexneri with nitrite (ppm) | Yes - 193 - 125
Yersinia enterocolitica with
CO2(%) Yes 282 35 31 -
Yer_sm/a enterocolitica with Yes 282 31 77 )
lactic(ppm)
Brochothrix thermosphacta No 44 - - -
Pseudomonas spp Yes - 144 - -

* 3 factors: temperature, pH and Aw
** 4th factor: additional facor (either CO2 or lactic acid or acetic acid or nitrite)
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Table 2. Summary of raw datasets (observed “logcount v. time” curves) selected to
develop thermal inactivation models. Initial datasets: observed growth curves used to
generate the growth models in the previous version of ComBase Predictor.

(3 factors”) (4th factor™)
|[Extended] No. of No. of newly No. of :::‘;v?f
Thermal inactivation curves in the included |curves in the includ)éd
initial set curves initial set
curves

Bacillus cereus No 41 - - -
Clostridium botulinum (non- No 35 i i i
prot.)
Escherichia coli Yes 51 21 - -
Listeria . Yes 67 149 ] ]
imonocytogenes/innocua
Salmonellae Yes 61 8 - -
Yersinia enterocolitica Yes 82 4 - -
Brochothrix thermosphacta Yes - 53 - -

* 3 factors: temperature, pH and Aw
** 4th factor: additional factor (either CO: or lactic acid or acetic acid or nitrite)

Table 3. Summary of raw datasets (observed “logcount v. time” curves) used to
develop non-thermal survival models.

NEW

non-thermal survival models

No. of observed survival
curves selected

Listeria
imonocytogenes/innocua

salmonellae

194

102

* 3 factors: temperature, pH and Aw
** 4t factor: additional factor (either COz, lactic acid, acetic acid or nitrite)
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As mentioned, other features of the ComBase Modelling Toolbox is the Perfringens
Predictor, a result of another FSA-funded project, and the DMFit web edition (Fig.
12), which is an extra plus, originally not in the objectives, but completed on users’
demand. Users can do predictive modelling tasks completely on the internet now,
using freely available software packages.

Fig. 12. DMFit web-edition. It fits complete sigmoid curves or their partial versions to
data.

DMfit web edition has been developed by the Institute of
Food Research to allow microbiolegists to fit log counts vs.
time data and extract parameters such as growth/death
rate and lag time/shoulder.

For further information on DMFit webh edition, click here.

DMFit

Input your data in the textbox below.

time ficted wvalue
0.00 2.06
2,42 2.11
4.84 Z.16
7.26 2.21
Q.68 Z.Z8
12.10 2.36
14,52 2.44
16.94 2.54
19.36 2.64
21.78 2.75
24.20 2.87
26.62 2.99
29.04 3.12
31.46 3.26

>

=

o P = Baranyi and Roberts Linear, biphasic or frilinear
3 2 27 i3 models
20 2.63
z4 Z.89 © Complete model @ Trilinear
27 2.85
44 3.99 m ® No lag ® Biphasic (No lag)
45 4,93 E
51 4.4 @ No asymtote @ Biphasic (No asymtote)
69 5.30
= = a b @ Linear
[ Display data | Fit
Convergence Lag/ shoulder

09853 . iy 20638 0.1867 |15.D355 |5.1289
R B o SEof Fit & Maximum rate Final value

10,0663 0.0045 86353 |0.4338
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Section Six: Dissemination

All development are available on the Internet. Acknowledgement is shown by several
publications referring to it (see the references), invited workshops (see below), many
invited conference talks (among them keynote lectures) and the fact that editors of the
Journal of Food Protection, a leading, refereed food science publication, call authors
of accepted publications to submit their data to Combase.

ComBase invited seminars and

workshops, 2003 - 2006

Norwich
Qui Londog . .
uimper, ;_eBudapes
Philadelphiae Pamplofa§S%@Bolo ha :
eDenver °*Washington Madrid Ua(’!ﬁé‘t%'f.AtL%Vnes“'a
° eNew Orleans
Queretaroidonterrey
» ®Bangkok
Bogotae Kuala.Lumpur
Sydne
Melbouyne.y°
Hobart's

Telling from the email addresses of those logging on ComBase, the distribution of
users can be represented as below:

O Industry

B Health and Research
O Education

O Government

B Consultant

O Unknown

This means that the majority of users come from industry.
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Section Seven: Publications and presentations
In addition to written and oral reports given to the Food Standards Agency, other
publication and presentation activities are listed below

Refereed papers, proceedings and book chapters

Baranyi J. and Tamplin M. (2004). ComBase: A Common Database on Microbial Responses
to Food Environments. J. Food Prot. 67, 1967—1971.

Tamplin M., Baranyi J. and Paoli G. (2003). Software programs to increase the utility of
predictive microbiology information. In: Modelling Microbial responses in Foods. (Eds:
R.C McKellar, X. Lu.) CRC, Boca Raton, Fla.

Baranyi, J. (2004). The ComBase Initiatve. In: Proceedings of the EU COST 920 Risk
Assessment Symposium, Pamplona, SPAIN, 28-29 June, 2004. (Ed: Arie Havalar)

Le Marc Y, Baranyi J, and Ross T (2005): Mechanistic modelling of pathogen stress
response. In: Understanding pathogen behaviour. (Ed: Mansell Griffiths). Woodhead
Publishing, London.

Baranyi J. (2005). Quantitative microbial ecology of food. Evolution of mathematical
modelling in food microbiology. Invited Editorial. Acta Alimentaria, 34, 335-337.

Le Marc Y., Pin C. and Baranyi J. (2005): Methods to determine the growth domain in a
multidimensional environmental space. Int.J. Food Microbiol. 100., 3-12

Le Marc Y, Huchet V, Beczner J, Thuault D, Mészaros L, Wilson D, Farkas J, Brocklehurst T
and Baranyi J. (2005). Modelling the kinetics of Listeria innocua and Listeria
monocytogenes in coculture with Lactococcus lactis. J.Appl. Microbiol. (submitted)

Baranyi J. (2006): Using the ComBase database and associated software tools to predict
microbial responses to food environments. Food Manufacturing Efficiency, 1, 9-13.

McMeekin J., Baranyi J., Zwietering M., Ross T., Dalgard P., Bowman J. and Kirk M.
(2006). Information systems in food safety management. Int. J. Food Microbiol. 112,
181-194

Popular articles:
Baranyi J., Tamplin M. and Peck M. (2003). ComBase: An international database of
microbial responses to food environments. New Food 2003/1. Russel Publishing, UK.
Baranyi J., Aldus C. and Dunford Z. (2003). Virtual safety. Food Quality News, 17/06/2003.
Baranyi J., Aldus C. and Dunford Z. (2003). Nove k dispozici ComBase - databaze modelu
prediktivni mikrobiologie Agronavigator, 19/06/2003.

Baranyi J., Aldus C. and Dunford Z. (2003). Predictive microbiology database launched
Institute of Food Technologists Daily News, 19/06/2003.

Baranyi J., Aldus C. and Dunford Z. (2003). Safety database. The Grocer, 21/06/2003.

Peck M., Baranyi J. & Belsten J. (2003). Microbial database could cut costs. Food
Manufacturer. June/2003.

Baranyi J., Aldus C. & Dunford Z. (2003). Combase. Food Engineering & Ingredients;
1/8/2003

Belsten J. and Baranyi J. (2003). Data exchange for safer food. Food Technology
International, 2004

Baranyi J. and Roberts T.A. (2004): Predictive Microbiology - Quantitative Microbial
Ecology. Culture, February, 2004.

Baranyi J., Tamplin M. and Ross T. (2004). The ComBase Initiative. Microbiology Australia
25/3 2004/1. Australian Society for Microbiology.

Invited workshops, seminars (organised and funded by hosts)

Baranyi J. and Pin C. (2003). ComBase — a combined database on bacterial responses to
food environments. Invited workshop associated with SAFEPORK: the 5th Conference
on the safety of pork; Crete, Greece, 1 October, 2003. (Lead by J. Baranyi)

Baranyi J. (2003). Computational tools for food microbiology. International course of the
Master Programme “Food Safety of Animal Products" organised by University of
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Bologna. (Invited lecture series).

Baranyi J., Pin C., Métris (2004). ComBase — a combined database on bacterial responses
to food environments. Invited workshop organised by the University of Malaya, 24
February, 2004. (Lead by J. Baranyi)

Baranyi J., Pin C., Métris A., Ross T., and Tamplin M. (2004). ComBase — a combined
database on bacterial responses to food environments. Invited workshops in Melbourne
and Sydney, organised by the Food Safety Centre of Excellence Australia, 27 February —
3 March, 2004. (Lead by J. Baranyi)

Baranyi, J. (2004). Predictive Microbiology Tools and ComBase. Workshop on the Annual
Meeting of the American Society for Microbiology, New Orleans, 23-26 May.

Baranyi J. and Tamplin M. (2004). ComBase — a combined database on bacterial
responses to food environments for Microbiological Risk Assessment. Washington DC,
27 August (Invited workshop for FDA and FSIS professionals of USDA, led by J.
Baranyi).

Baranyi J. (2004). ComBase — a combined database on bacterial responses to food
environments. Invited workshop associated with FoodMicro 2004, Portoroz, Slovenia, 15
September, 2004.

Baranyi J. (2004). ComBase — a combined database on bacterial responses to food
environments. Workshop for Food Safety Professionals. Food Standards Agency,
London, 4 November, 2004.

Baranyi, J. (2004). ComBase — a combined database on bacterial responses to food
environments. EU COST 920 Risk Assessment Symposium, Pamplona, SPAIN, 28-29
June, 2004.

Baranyi J. (2005). ComBase — a combined database on bacterial responses to food
environments. Workshop on the annual meeting of the Society for Applied Microbiology.
12-13 January, 2005. Norwich, UK.

Baranyi J. (2005). ComBase — a combined database on bacterial responses to food
environments. Invited workshop on the invitation of the University of Monterrey. April
2005, Monterrey, Mexico.

Baranyi J. and Le Marc Y. (2005). Using the ComBase database and related predictive
microbiology software tools. Istituto Zooprofilattico Sperimentale, Brescia, October, 2005

Baranyi J. (2006). ComBase — a combined database on bacterial responses to food
environments. Workshop and seminars on the invitation of the University of Queretaro.
October 2006, Queretaro, Mexico. The same time: Invited talk on University Science
Days.

Baranyi J. (2006). ComBase — a combined database on bacterial responses to food
environments. Workshop and seminars on the invitation of the University of La Sabana,
Bogotd, Colombia. October 2006. The same time: Invited talk to undergraduates.

Baranyi J. (2006). Modelling Microbial Interactions. Seminar at University of Colorado State.
November 2006.

Baranyi J. (2006). ComBase — a combined database on bacterial responses to food
environments. Workshop and seminars on the invitation of the University of North
London. May 2007.
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Section Eight: Deliverables achieved

All the project deliverables have been achieved as shown below.

D1

Growth Predictor version 2 will have been
improved and supplied with user-friendly help
file and manual; also accompanied by
continuous technical support.

31.12.2003

31.12.2003

Yes

D2

Create the ComBase web-site at IFR and link
it with relevant pages of FSA and other
partners.

30.09.2004

30.09.2004

Yes

D3

Include all available data from European
partners in ComBase.

31.03.2005

31.03.2005

Yes

D4

Using all available data (FSA, ARS, EU,
literature), develop basic predictive models
of growth and survival.

31.12.2005

31.12.2005

Yes

D5

Using all the available data, develop
advanced predictive models, with
uncertainty measures and options of dynamic
environment, of growth and survival; thereby
upgrading all the predictive models in
ComBase.

31.03.2006

31.03.2006

Yes

D6

Supply both the desktop and the internet
version of the database with the new models,
creating ComBase-PMP: Combined
Database and Predictive Modelling Program.

31.03.2006

31.03.2006

Yes; the
name is
different

D7

Dissemination activities, papers, leaflets,
workshops.

30.06.2006

30.06.2006

Yes

Conclusions
According to Prof Tom McMeekin, Director of Australian Food Safety Centre of
Excellence, “...properly supported... ComBase can be a watershed in the
development of Predictive Microbiology and its applications.” (McMeekin,
T.A.(2003). An Essay on the Unrealized Potential of Predictive Microbiology. In:
McKellar, R.C. and Lu, X (eds): Modelling Microbial responses in Foods. CRC, Boca
Raton, Fla., USA, pp 231-235). This project was a demonstration what direction it
needs to go to successfully reach its potentials.

Acknowledgements
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Appendix A. Modelling background

Al. Introduction

Since the early 1980s, with the advent of powerful PCs, food safety research has increasingly
turned to quantitative, computational tools. The development of databases, hand in hand with
mathematical and statistical processing, has become a key element in food safety. This was
recognised by the UK Ministry of Agriculture Fisheries and Food, who launched their
Predictive Microbiology Programme at the end of the 1980s. Work funded under this
Programme produced a large amount of growth and survival data for various food-borne
organisms and formed the underlying database for the Food MicroModel software, which
predicted the growth and survival of various (mainly pathogenic) micro-organisms in food.

These data now constitute the core of the database behind ComBase Predictor.

A2. Data

Predictive modelling, for microbiological purposes, and therefore Com®Base Q’red_ictm: is

based on the recognition that, although food microbiology experiments may have been
carried out for different purposes, such as challenge tests for new product development, or
establishing the properties of an emerging pathogen, the results can always be put into the
broad framework of “Microbial response to a specific environment around the cells”.
Mathematically, this is a mapping between two spaces. Both can be characterised by one or
more (possibly dynamic, i.e. time-dependent) factors depending on how detailed the
description is intended to be.

Predictive models for Com®Base Predictor are based only on output from laboratory

experiments observed in culture media under well-controlled laboratory conditions. Data were
not all considered with equal weight, since the aim was not to model the average outcome of
those measurements, but to produce safe (conservative) predictions. Additionally, many data
were obvious outliers, identified by mathematical / statistical means. However, these data
were retained in the database (though not used in the creation of the models), since they can
be useful to estimate the variability of microbial responses when experiments are repeated.
These are the main reasons for observed growth curves being generally below predicted
curves.

The raw data are stored in a Microsoft Access database, in a structure that was developed at
IFR.

A3. Mathematical modelling

The need to predict bacterial kinetics in food generated a discipline that is called Predictive
Microbiology in the scientific literature. It focuses on the mathematical description of the
microbial responses to the environment in food. A comprehensive review of the subject can
be found in Ross et al. (1999), which also serves as a basis for this summary.

Predictive microbiology is based on the hypothesis that growth is an intrinsic characteristic of
the organism and will occur reproducibly in the same environment. Variation of cell
concentration is described by a mathematical (growth or survival) curve and this is called a
primary model. Secondary models describe how the parameters of primary models depend
on environmental factors such as temperature, pH and water activity. These are described by
mathematical functions and, by interpolation, the cell concentration against time can be
predicted for any combination of conditions.

A3.1 Primary models

A3.1.1 A primary model for growth and thermal inactivation
Unlike the superseded Food MicroModel, which predominantly used the

Gompertz sigmoid function for its primary growth model, Com®Base Predictor

uses the model of Baranyi and Roberts (1994). The main differences between
the two approaches are explained below.
A sigmoid primary model is commonly described by four parameters:
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(1) Yo the natural logarithm of the initial cell concentration.
This is an initial value that is specific to the history of the organism and not
related to the current growth environment.

(2) A the time in lag phase (or shoulder).

The length of the lag phase will depend on the intrinsic characteristics of the bacteria, the
current environmental conditions and the history (initial physiological state) of the cells. Cells
that have come from a different environment or are damaged (for example after heat
treatment or freezing) may require more time to synthesise macromolecules and repair
damage before they can divide than undamaged cells from a similar environment.

(3) Mmax the maximum specific growth rate (or death rate).

This represents the steepest slope of the curve cell concentration (natural logarithm) v. time.
It is considered to be an intrinsic characteristic of the organism dependant on the current
environment but is not affected by the cell history. Note that the specific growth rate means
the increase in natural logarithm per unit time, whilst the curves are shown with a logarithm to
the base 10 of the cell concentration. Thus the real specific growth rate is, in fact, about 2.3-
times higher than the growth rate seen on the plot.

The doubling time (required for the population to double in the exponential phase) is
calculated as:

doubling time= In(2)/specific growth rate.

The D-value (the time required for a 1-log reduction of the bacterial population in the death
phase) is obtained as:

D-value= -In(10)/specific death rate.
Note that all time values are in hours in the software.

(4) ymax the natural logarithm of the maximum cell concentration (or ymin, the logarithm of
the concentration of the resistant population in the case of a death curve)

The maximum concentration is less extensively studied in predictive microbiology than the
other growth parameters because food safety risk and spoilage generally appears at much
lower concentrations; therefore, it is modelled only by an average value. In the case of
thermal death models, ymi» is not modelled but considered to be ymin= -<.

Using the above terminology:

1. The Gompertz function overestimates the maximum specific growth rate by
10-15%.

2. The maximum specific growth rate was the main model parameter for Food
MicroModel and is the main model parameter for ComBase Predictor. However, in

ComBase Predictor, the other one is not the lag but rather the “initial physiological state”,

00 (see Baranyi and Roberts, 1994). It is a dimensionless number between 0 and 1;if o, =0,
then there is no growth, and the lag time is infinite; if ao=1, there is no lag, and growth will
commence immediately. It has the same role as the inoculum size: an initial parameter,
quantifying the history of the cells (this parameter can be set up by the user).

From that, the lag is a consequence, as the following formula shows:

A= -|n(0Lo)/OCmax

Because the user is rarely able to provide its value, a typical value is used as the default.
Namely, if the chosen growth curves are fitted with the primary model, then the a0 values
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obtained are modelled as function of the environmental factors (temperature, pH, water
activity, possibly a fourth factor). This “secondary” model is simply a constant, taking the
geometrical average of the hy = -In(a,) values.

A3.1.2 Primary models for non-thermal inactivation

The model of Baranyi and Roberts (1994) has also been used to describe inactivation curves
with sigmoid shapes (or without shoulder or tail). The model of Baranyi and Roberts is
inappropriate to describe some inactivation curves which do not exhibit this sigmoid shape.
For example, for some curves, the death phase has a concave shape, due to the presence of
a resistant population. Concave curves or concave curves followed by tailing were modelled
with respectively biphasic (see figure below) or tri-phasic models. In order not to
underestimate microbiological risks, only the death rate of the resistant population was
considered in the secondary modelling.

8

7

6
g’ Death rate of the
LG 5 resistant
) population
o 4 -
-

3 .

2 .

1 T T

0 5 10
time (days)

A3.2 Secondary models

When creating the secondary models, the logarithms of the specific growth rates (or death
rates) were described as a function of the (possibly rescaled) environmental factors by a
standard quadratic multivariate polynomial. The %NaCl values were first transformed into
water activity values by the formula:

Aw=1-NaCl*(5.2471+0.12206*NaCl)/1000

(Resnik and Chirife, 1988). For the growth and the non-thermal death models, the water
activity values were rescaled as in Gibson et al. (1994) to obtain:
b =sqrt(1-Aw ).

For the models of ComBase Predictor, a standard second order polynomial modelled the

effect of temperature, pH, and Aw (or b,) values on the logarithm of the growth or death rate.
This model was fitted for the rates produced by the primary models for each organism. They
represent the basic models, which produce the “worst case” predictions, since further “fourth
factors”, such as CO2 or nitrite content, only decrease these growth rates. (Note that other
subsidiary conditions are also recorded in the database, but not taken into account for the
predictions).

Currently only one “fourth factor” can be taken into account in any particular model. If the
value of the fourth factor is 0, then the prediction produced by the basic three-factor model is
obtained. This feature is currently lacking in any other predictive microbiology programme.
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A4. Model performance

Although modelling lag time would be preferable, to date, validated predictive models have

been developed on growth rates. This is because the lag phase is technically difficult to study,
so quantitative data is lacking, and lag is more difficult to model as it depends not only on the
current conditions but also on the history (or initial physiological state) of the cells.

To demonstrate the goodness of fit of the models, observed rates were plotted against

predicted, for each model, in log-scale (see Appendix C). The deviation of the points from the
45° equality line demonstrates the accuracy of the models. As a rule of thumb, the current
performance of three-factor (core) predictive models is about 30-35 %, which means that the
average error of prediction for the exponential growth / death rates is about this fraction of the

respective predicted value.

One basic principle of empirical modelling is that one should not extrapolate, i.e. predictions
should not be made outside the region of observations.

The limits of the growth and thermal death models for each environmental factor for each

organism are given in the Table A1-A3 below:

Table A1. The limits of each environmental factor in each growth model. The primary
variables are temperature, pH and water activity (Aw); the fourth factor (ef4) can be either

CO2, nitrite, or organic acids, but not a combination of more of them.

IModeI Tempmin | Tempmax| PHmin PHmax AWnin efdmax
lAeromonas hydrophila 2 37 4.6 7.5 0.974 0
Bacillus cereus with CO2(%) 5 34 4.9 7.4 0.94 60
Bacillus licheniformis 13 34 4 7.6 0.907 0
Bacillus subtilis 10 34 4.3 7.8 0.933 0
Clostridium botulinum (non-prot.) 4 30 5.1 7.5 0.974 0
Clostridium botulinum (prot.) 14 40 4.7 7.2 0.954 0
Clostridium perfringens 15 52 5 8 0.971 0
Escherichia coli with CO2(%) 10 42 4.5 7.5 0.961 100
Listerla monocytogenesimnocua | 4| 49 | 43 | 75 | 0824 | 100
Listeria monocytogenesimnocua | 4| 40 | 44 | 75 | 0%24 | 200
Listora et togenes/innocua 1 40 4.4 75 | 0924 | 20000
ﬁ;egg’e'yc"(’;‘;‘r’%’)toge”ey’””°C“a 1 40 4.4 75 | 0924 | 10000
Staphylococcus aureus 7.5 30 4.3 71 0.907 0
salmonellae with CO2(%) 7 40 3.9 7.4 0.973 100
salmonellae with nitrite(ppm) 7 40 3.9 7.4 0.973 200
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Shigella flexneri with nitrite (ppm) 15 37 5.5 7.5 0.971 1000

Yersinia enterocolitica with CO2(%) -1 37 4.4 7.2 0.957 80
Yer_sinia enterocolitica with 1 37 4.4 79 0.957 10000
llactic(ppm)

Brochothrix thermosphacta 0 30 5.5 7 0.95 0
Pseudomonas spp 0 20 5 74 0.961 0

Notes: For each organism and model the upper limit of Aw = 1.
The fourth environmental factor is denoted by ef4, for which the minimum is always 0.

Table A2. The limits of each environmental factor in each thermal inactivation model.
The primary variables are temperature, pH and water activity (Aw).

IModeI Tempmin [ TeMPmax| PHmin PHmax | AWmin | AWmax
Bacillus cereus 90 100 4.5 7 0.954 0.986
Clostridium botulinum (non-prot.) 80 95 4.1 7.3 0.971 1
Escherichia coli 54.5 64.5 4.2 8 0.947 1
Listeria monocytogenes/innocua 60 68 4.2 7 0.943 1
Salmonellae 54.5 65 4 7.1 0.997 1
Yersinia enterocolitica 52 60 4.2 7 0.961 1
Brochothrix thermosphacta 40 55 5 7 0.989 1

Table A3. The limits of each environmental factor in each non-thermal survival model. The
primary variables are temperature, pH and water activity (Aw); the fourth factor (ef4) can be
either CO2, nitrite, or organic acids, but not a combination of them.

IModeI Tempmin | TeMpPmax| PHmin PHmax AWnin
Listeria monocytogenes/innocua 0 20 3.5 7 0.793
Salmonellae 0 40 4.3 7.5 0.781

Note: For each organism and model the upper limit of Aw = 1

Note that it is possible that at certain conditions (for example high salt), both growth and
survival predictions can be generated. The reason for this is that the interpolation region is
not well definable in multi-dimension. The most advanced methods to overcome this difficulty
is that of Le Marc et al (2005) but the implementation of that method in ComBase Predictor
would require much more effort than what was the scope of this project. In a possible
continuation of the project, the solution of this problem should be one of the main priorities. As
a temporary measure, when the conditions of temperature, pH and water activity are also
included in a growth model, a error message appears and the user is invited to continue with
“Growth model”.
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Appendix B. Source of data to generate models

Bl Growth models

Aeromonas hydrophila (3 factors)

Core model (temperature, pH, Aw): 125 rates from the Food Micro Model data set, 31 rates
from Palumbo et al. (1991), 2 rates from Golden et al. (1989)

References

Palumbo S. A., Willimas A.C., Buchanan R.L. and Phillips J.G. 1991: Model for the aerobic
growth of Aeromonas hydrophila K144. J. Food Prot. 54, 429-435.

Golden D.A,, Eyles M. J., and Beuchat L. R. 1989: Influence of modified atmosphere storage
on the growth of uninjured and heat injured Aeromonas hydrophila. Appl. Environ. Microbiol.
55(11), 3012-3015.

Bacillus cereus with CO2(%)

Core model (temperature, pH, Aw): 86 rates from the Food Micro Model data set, 76 rates
from the Institute of Food Research (Norwich, UK), 33 rates from London Metropolitain
University.

CO2 data: 58 rates from the Food Micro Model data set.

Bacillus licheniformis (3 factors)

Core model (temperature, pH, Aw): 58 rates from the Food Micro Model data set.

Bacillus subtilis (3 factors)

Core model (temperature, pH, Aw): 68 rates from the Food Micro Model data set.

Clostridium botulinum (non-prot.) (3 factors)

Core model (temperature, pH, Aw):52 rates from the Food Micro Model data set.

Clostridium botulinum (prot.) (3 factors)

Core model (temperature, pH, Aw): 77 rates from the Food Micro Model data set.

Clostridium perfringens (3 factors)

Core model (temperature, pH, Aw): 51 rates from the Food Micro Model data set.

Escherichia coli with CO2(%)

Core model (temperature, pH, Aw): 80 rates from the Food Micro Model data set, 72 data
from Buchanan et al. (1992) and 17 data from Glass et al. (1992).

CO2 data: 78 rates from the Food Micro Model data set.
References

Buchanan R.L., Klawitter, L. A. 1992. The effect of incubation temperature, initial pH and
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sodium chloride on the growth kinetics of Escherichia coli O157:H7. Food Microbiol. 9: 185 -
196

Glass K. A., Loeffelholz J. M., Ford J. P., and. Doyle M. P. 1992. Fate of Escherichia coli
0157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Appl. Environ.
Microbiol. 58(8), 2513 - 2516

Listeria monocytogenes/innocua with CO2(%)

Core model (temperature, pH, Aw): 251 rates from the Food Micro Model data set, 206 data
from Buchanan and Phillips (1990), 25 data from Duh et al. (1993), 43 data from Le Marc
(2001).

CO2 data: 75 rates from the Food Micro Model data set, 9 data from the Institute of Food
Research, Norwich.

References

Buchanan R. L. and Phillips J. G. 1990. Response surface model for predicting the effects of
temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on
the growth of Listeria monocytogenes. J. Food Protect. 53, 370-376.

Duh Y. H. and Schaffner D. W. 1993. Modelling the effect of temperature on the growth rate
and lag time of Listeria innocua and Listeria monocytogenes. J. Food Protect. 56, 205-210.

Le Marc Y. Développement d'un modéle modulaire décrivant I'effet des interactions entre les
facteurs environnementaux sur les aptitudes de croissance de Listeria. Thése de doctorat.
Université de Bretagne Occidentale, France.

Listeria monocytogenes/innocua with nitrite(ppm)

Data (temperature, pH, Aw): 251 rates from the Food Micro Model data set, 206 data from
Buchanan and Phillips (1990), 25 data from Duh et al. (1993), 43 data from Le Marc (2001).

Nitrite data: 75 rates from the Food Micro Model data set, 118 data from Buchanan and
Phillips (1990).

References

Buchanan R. L. and Phillips J. G. 1990. Response surface model for predicting the effects of
temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on
the growth of Listeria monocytogenes. J. Food Protect. 53, 370-376.

Duh Y. H. and Schaffner D. W. 1993. Modelling the effect of temperature on the growth rate
and lag time of Listeria innocua and Listeria monocytogenes. J. Food Protect. 56, 205-210.

Le Marc Y. Développement d'un modele modulaire décrivant I'effet des interactions entre les
facteurs environnementaux sur les aptitudes de croissance de Listeria. Thése de doctorat.
Université de Bretagne Occidentale, France.

Listeria monocytogenes/innocua with lactic(ppm)

Data (temperature, pH, Aw): 251 rates from the Food Micro Model data set, 206 data from
Buchanan and Phillips (1990), 25 data from Duh et al. (1993), 43 data from Le Marc (2001).

Lactic acid data: 129 rates from the Food Micro Model data set.
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Duh Y.H. and Schaffner D. W. 1993. Modelling the effect of temperature on the growth rate
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Listeria monocytogenes/innocua with acetic(ppm)

Data (temperature, pH, Aw): 251 rates from the Food Micro Model data set, 206 data from
Buchanan and Phillips (1990), 25 data from Duh et al. (1993), 43 data from Le Marc (2001).

Acetic acid data: 52 rates from the Food Micro Model data set.

References

Buchanan R. L. and Phillips J. G. 1990. Response surface model for predicting the effects of
temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on

the growth of Listeria monocytogenes. J. Food Protect. 53, 370-376.

Duh Y. H. and Schaffner D. W. 1993. Modelling the effect of temperature on the growth rate
and lag time of Listeria innocua and Listeria monocytogenes. J. Food Protect. 56, 205-210.

Le Marc Y. Développement d'un modéle modulaire décrivant I'effet des interactions entre les
facteurs environnementaux sur les aptitudes de croissance de Listeria. Thése de doctorat.
Université de Bretagne Occidentale, France.

Staphylococcus aureus (3 factors)

Core model (temperature, pH, Aw): 93 rates from the Food Micro Model data set.

salmonellae with CO2(%)

Core model (temperature, pH, Aw): 146 rates from the Food Micro Model data set, 9 data
from Bovill et al. (2000) and 104 data from Oscar (1999).

COz2 data: 75 rates from the Food Micro Model data set.

References

Bovill R., Bew J., Cook N., D'Agostino M., Wilkinson N. and Baranyi J. 2000. Predictions of
growth for Listeria monocytogenes and Salmonella during fluctuating temperature. Int. J.
Food Microbiol. 59, 157-165.

Oscar T.P.1999. Response surface models for effects of temperature, pH, and previous

growth pH on growth kinetics of Salmonella typhimurium in brain heart infusion broth. J. Food
Protect. 62,106-111.

salmonellae with nitrite(ppm)
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Core model (temperature, pH, Aw): 146 rates from the Food Micro Model data set, 9 data
from Bovill et al. (2000) and 104 data from Oscar (1999).

Nitrite data: 28 rates from the Food Micro Model data set.

References

Bovill R., Bew J., Cook N., D'Agostino M., Wilkinson N. and Baranyi J. 2000: Predictions of
growth for Listeria monocytogenes and Salmonella during fluctuating temperature. Int. J.
Food Microbiol. 59, 157-165.

Oscar T.P.1999: Response surface models for effects of temperature, pH, and previous

growth pH on growth kinetics of Salmonella typhimurium in brain heart infusion broth. J. Food
Protect. 62, 106-111.

Shigella flexneri with nitrite(ppm)

Core model (temperature, pH, Aw): 193 data from Zaika et al. (1992).

Nitrite data: 125 rates from Zaika et al. (1992).

Reference

Zaika L. L., Phillips J. G. and Buchanan R.L. 1992. Model for aerobic growth of Shigella

flexneri under various conditions of temperature, pH, sodium chloride and sodium nitrite
concentrations. J. Food Protect. 55, 509-513.

Yersinia enterocolitica with CO2(%)

Core model (temperature, pH, Aw): 282 rates from the Food Micro Model data set, 12 rates
from Alber et al. (1992) and 23 data from Badhuri et al. (1995).

CO2 data: 31 rates from the Food Micro Model data set.

References

Alber S. A. and Schaffner D. W. 1992. Evaluation of data transformations used with the
square root and Schoolfield models for predicting bacterial growth rate. Appl. Environ.
Microbiol. 58, 3337-3342.

Bhaduri S., Buchanan R. L. and Phillips J. G.1995. Expanded response surface model for

predicting the effects of temperatures, pH, sodium chloride contents and sodium nitrite
concentrations on the growth rate of Yersinia enterocolitica. J. Appl. Bacteriol. 79,163-170.

Yersinia enterocolitica with lactic(ppm)

Core model (temperature, pH, Aw): 282 rates from the Food Micro Model data set, 12 rates
from Alber and Schaffner (1992) and 23 data from Badhuri et al. (1995).

Lactic acid data: 77 rates from the Food Micro Model data set.
References
Alber S. A and Schaffner D. W. 1992: Evaluation of data transformations used with the square

root and Schoolfield models for predicting bacterial growth rate. Appl. Environ. Microbiol. 58,
3337-3342.
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Bhaduri, S., Buchanan, R. L. and Philips J. G.1995. Expanded response surface model for
predicting the effects of temperatures, pH, sodium chloride contents and sodium nitrite
concentrations on the growth rate of Yersinia enterocolitica. J. Appl. Bacteriol. 79,163-170.

Pseudomonas spp. (3 factors)

Data (temperature, pH, Aw): 12 rates from Pin et al. (1998), 70 rates from Campden and
Chorlwywood Research Association, Chipping Campden and 62 rates from London
Metropolitan University.

Reference
Pin C. and Baranyi J. 1998. Predictive models as means to quantify the interactions of
spoilage organisms. Int.J. Food Microbiol. 41. 59-72.

Brochothrix thermosphacta (3 factors)

Core model (temperature, pH, Aw): 44 rates from the Food Micro Model data set.

B2. Thermal inactivation models

Bacillus cereus (3 factors)

Core model (temperature, pH, Aw): 41 death rates from the Food Micro Model data set.

Clostridium botulinum (non-prot.) (3 factors)

Core model (temperature, pH, Aw): 35death rates from the Food Micro Model data set.

Escherichia coli (3 factors)

Core model (temperature, pH, Aw): 51 rates from the Food Micro Model data set, 21 data
from Unilever Research.

Listeria monocytogenes (3 factors)

Core model (temperature, pH, Aw): 67 rates from the Food Micro Model data set, 13 data
from Unilever Research; 136 data from Linton et al. (1995).

Reference
Linton, R.H., Carter W.H., Pierson M.D, Hackney C.R. and Eifert J.D. 1995. Use of a modified

gompertz equation to predict the effects of temperature, pH, and NaCl on the inactivation of
Listeria monocytogenes Scott A heated in infant formula. J. Food Protect. 59, 16-23

Salmonellae (3 factors)

Core model (temperature, pH, Aw): 61 rates from the Food Micro Model data set, 8 data from
ARS-Eastern Regional Research Center, Philadelphia, USA.

Yersinia enterocolitica (3 factors)

Core model (temperature, pH, Aw): 86 death rates from the Food Micro Model data set.

Brochothrix thermosphacta (3 factors)

Core model (temperature, pH, Aw): 53 death rates from Baranyi et al. (1996).
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growth and thermal inactivation of Brochothrix thermosphacta. J. Appl. Env. Microbiol. 62.
1029-1035.

B3. Non thermal survival models

Listeria monocytogenes (3 factors)

Data (temperature, pH, Aw): 194 inactivation rates from the Food Micro Model data set.

Salmonellae (3 factors)

Data (temperature, pH, Aw): 102 inactivation rates from the Food Micro Model data set.
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Appendix C. Goodness of fit of generated models
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E. coli (3 factors)
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Appendix D. List of files on the enclosed CD

wWh =

This report CBPtechRep.pdf
User manual for ComBase Predictor web version CBPuserMan.pdf
ComBase Predictor stand-alone version folder CBP

(This needs to be copied in a working directory on the hard disk)
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