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Glossary and Abbreviations 

 

0 Dimensionless quantity between 0 and 1 that describes 

the physiological state of spores in the Baranyi equation 

(see Appendix 1 for further details) 

cfu    Colony forming unit 

DMFit Dynamic Modelling and Fitting (see 

http://www.ifr.ac.uk/safety/DMFit ); a Microsoft Excel 

Add-In developed at IFR to fit sigmoid curves. 

IFR    Institute of Food Research 

NaCl    Sodium chloride (salt) 

VB6    Microsoft Visual Basic 6.0 programming platform 

 

 

http://www.ifr.ac.uk/safety/DMFit
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Executive Summary  

 

Background 

In 2003, the Food Standards Agency and the Institute of Food Research from the 

United Kingdom and the USDA Agricultural Research Service and its Eastern 

Regional Research Centre from the United States signed a Concordat to collaborate in 

the development and maintenance of an Internet-based system called ComBase 

(www.combase.cc).  The system allows users to browse through publicly available 

data on microbial responses to the food environment and provides software tools to 

analyse those data. The aim of the initiative is to provide food manufacturers, 

regulatory officers, risk assessors and food microbiology researchers around the world 

a common and internationally recognised pool of data and software to predict 

microbial responses to changes in food composition, manufacturing and storage. The 

Australian Food Safety Centre of Excellence joined the initiative in February 2006, in 

which year a new Concordat was signed. 

 

Since then, ComBase has become the largest and most significant food microbiology 

database in the world, storing quantified microbial responses to the food environment. 

It contains data from (UK and US) government-funded research, as well as data from 

the literature and data-donating laboratories. It is supplied with programs that helps 

users to navigate and search in the database and predictive packages based on the 

stored raw data.  The project has attracted great international acknowledgement, 

shown by many invitation around the world to hold workshops on its use, and data 

donated by many laboratories as contributions to a common goal.  

 

The Combase web site is hosted by the Institute of Food Research (IFR), Norwich, 

UK. It is a hub that directs user enquiries to  

(1) the actual raw data and the software navigating in the database; 

(2) software tools on how to use the information in the database.  

 

IFR has been responsible for the quality assurance of the data accumulated, and the 

development of the predictive software, both in terms of modelling and programming.   

ERRC has produced the software navigating in the database.  A ComBase Executive 

Committee was established with yearly meetings to assist the development of the 

structure, function and dissemination of the initiative.  

 

Rationale and Objectives 

In this project, an internet-based platform has been developed to replace the 

former MAFF-funded Food MicroModel as a package integrating a much 

bigger database and much more sophisticated predictive modelling tools. 

Its easy availability and use increased the users’ knowledge and confidence 

in predictive microbiology and contributes to improve food safety.  

The objectives of this project were:  

1. Enter available data in ComBase continuously. 

2. Further develop and provide Technical Support to the predictive software Growth 

Predictor. 

3. Unify four groups of publicly available datasets (FSA, ARS, EU, and Literature) to 

develop predictive models of growth and survival. 

4. Create the ComBase web site at IFR and link it with relevant pages of FSA and 

other partners.  

http://www.combase.cc/
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5. In collaboration with USDA-ARS ERRC, develop ComBase-PMP: a Combined 

Database and Predictive Modelling Program integrating browsing and predictive 

facilities in a single package.  

 

Outcome/Key Results Obtained 

- Growth Predictor version 2 has been launched, with improvements based on users’ 

suggestions.  

Remark: This was a stand-alone version of the predictive growth models formerly 

developed. However, in agreement with the FSA, the stand-alone platform was not 

pursued further. The technical help for installation was very time-consuming and a 

web-based predictor (ComBase Predictor) was developed instead, which is now 

available via the ComBase Modelling Toolbox link of the www.combase.cc web site. 

 

- The ComBase website is linked with FSA and other partner sites, to make it easier 

for users to find the information most suitable to their enquiry. 

 

- Data from European partners have been incorporated into ComBase. This was also 

supported by a 2-yrs project from the EU. Currently we host ca 37,000 records, and 

the majority of the records are full logcount curves From literature, we also put data in 

Combase when it represented only a growth or death rate as a response to the 

environment in question. Ca 2,000 records are not on the Internet yet since they were 

observed in dynamic environment and the ComBase Browser is not able to display 

dynamic environment yet. 

 

- Using all available data (FSA, ARS, EU and literature), predictive models of growth 

and survival have been developed (see technical report). 

 

- ComBase-PMP: Combined Database and Predictive Modelling Program stand-alone 

version was developed and made available to data donors. 

Remark: By July 2006, the predictive microbiology research group at the US partner 

has become smaller and smaller. After departure of key expertise, its leader, Dr Mark 

Tamplin also left and sadly the programmer of their flagship predictive software, the 

Pathogen Modelling Program, died. Currently there is no prospect for PMP to be 

developed further and the ComBase-PMP association is not possible anymore. 

Therefore we omitted the reference to PMP from the integrated web-version and it has 

become ComBase Modelling Toolbox.  This package consists of  

(i) ComBase Predictor representing generic (i.e. based on microbial curves in broth 

with optimal medium) growth, non-thermal survival and thermal inactivation models, 

applicable also under fluctuating temperature; 

(ii) A scenario-specific dynamic predictor, the Perfringens Predictor to model the 

growth of Clostridium perfringens during the cooling of beef.  

(iii) The web-version of DMFit, which fits sigmoid curves to "log cfu vs. time" 

bacterial growth data.  

(iv) A help system and a manual have been made freely available via the internet on 

the use of the above packages.  

(v)  ca 30 invited ComBase workshops have been held around the world.  

 

What it means and why it is important 

Similarly to genomic databases (gene banks), ComBase serves as a repository for data 

that can be accessed by users seeking to estimate microbial responses to various food 

http://www.combase.cc/
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environments. However, even if all publicly available data are really also accessible 

(the role of ComBase Browser) it is not evident how to use the data. The Integrated 

ComBase environment, now also including the ComBase Modelling Toolbox, gives 

invaluable help, ideas, guide and examples how to process the data, which will have 

obvious and positive implications on the standardisation of the work of food 

microbiology laboratories international risk assessors, researchers and regulatory 

officers. 
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Section One: Objectives of the project 

 

Objective 1. Launch Growth Predictor version 2.  

Version 2 was launched with improvements based on users’ suggestions.  

However, in agreement with FSA, this tool was not developed further. Growth 

Predictor was a stand-alone version of the predictive growth models formerly 

developed in the MicroBase project with FSA.  This stand-alone platform required a 

lot of technical help when users installed it,  and a web-based predictor (ComBase 

Predictor) was developed instead, which is now available via the ComBase Modelling 

Toolbox link of the www.combase.cc  web site. 

 

- Objective 2. Develop an integrated web environment with links to FSA and 

other partner sites. 

The www.combase.cc  address is today the most frequently visited web site at IFR, 

getting hundreds of world-wide hits every day (excluding automated search engines 

like Yahoo, Google, etc). It is a hub of Knowledge Transfer making it easier for users 

to find the information most suitable to their enquiry. 

 

- Objective 3. Incorporate data from supporting partners into ComBase.  

This was also supported by a 2-yrs project from the EU. Currently ComBase hosts ca 

37,000 records, and the majority of the records are full logcount curves.  From 

literature, we also put data in Combase when it represented only a growth or death 

rate as a response to the environment; these represent some 5,000 records.  Ca 2,000 

records are not on the Internet yet since they were observed in dynamic environment 

and the ComBase Browser is not able to display dynamic environment yet. 

 

- Objective 4. Use all available data (FSA, ARS, EU, Literature), predictive 

models of growth and survival.  

ComBase-PMP: Combined Database and Predictive Modelling Program stand-alone 

version was developed and made available to data donors. 

Remark: By July 2006, the predictive microbiology research group at the US partner 

has become smaller and smaller. After departure of key expertise, its leader, Dr Mark 

Tamplin also left and sadly the programmer of their flagship predictive software, the 

Pathogen Modelling Program, died. Currently there is no prospect for PMP to be 

developed further and the ComBase-PMP association is not possible anymore. 

Therefore we omitted the reference to PMP from the integrated web-version and it has 

become ComBase Modelling Toolbox.  This package consists of  

(i) ComBase Predictor representing generic (i.e. based on microbial curves in broth 

with optimal medium) growth, non-thermal survival and thermal inactivation models, 

applicable also under fluctuating temperature; 

(ii) A scenario-specific dynamic predictor, the Perfringens Predictor to model the 

growth of Clostridium perfringens during the cooling of beef.  

(iii) The web-version of DMFit, which fits sigmoid curves to "log cfu vs. time" 

bacterial growth data.  

(iv) A help system and a manual have been made freely available via the internet on 

the use of the above packages.  

 

Below we give details of these objectives. Most results are summarised in the user 

manual on a CD enclosed to this report; we don’t repeat those here. 

http://www.combase.cc/
http://www.combase.cc/
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Section Two: Objective 1.  Launch Growth Predictor version 2  

Growth Predictor version 1 was sent to users (Unilever, US and UK food consultants) 

and based on their suggestions, some modifications were devised to make it more 

user-friendly.  Its Version 2 is now available at   

http://www.ifr.ac.uk/Safety/GrowthPredictor/   

and also it is enclosed to this report on a CD. However, still many problems have 

remained with its installation. It was written in Visual Basic 6.0 and it needed the 

MSCHART.OCX file that is a standard Windows system file but, by default, not part 

of the installation. Therefore, if the user did not have administrator right, he/she could 

not install it, even if we enclosed it in the installation package. Another problem was 

that Visual Basic 6 was not supported anymore, but upgraded to Visual Studio, but the 

migration was far from seamless. Even today we have difficulties to modify VB6 

programs in Visual Studio. 

Therefore, in 2005, we agreed with the FSA project officer (Geraldine Hoad) that we 

don’t develop the final product in VB6 but in .Net (dotNet).  This means that the user 

can get prediction only via the internet. This may make it less attractive feature for 

those who has no or slow internet connection but this is only question of time when 

Internet will be common and fast. On the other hand, in the long run, we won’t have 

installation problem anymore, all upgrade can be done on the server 

 

As a result, the web-based ComBase Predictor was developed instead, which is now 

available via the ComBase Modelling Toolbox link of the www.combase.cc  web site. 

The user manual of the program and the program itself is on the CD enclosed to this 

report.  

 

http://www.ifr.ac.uk/Safety/GrowthPredictor/
http://www.combase.cc/
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Fig. 1.  Example screens from Growth Predictor and ComBase Predictor, describing 

the growth for Aeromonas hydrophila at the default conditions (temperature 20 C, pH 

7, NaCl 0.5%). 

 

 
------------------------------------------------------------------------------------------------------ 
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Section Three:  Objective 2.  Develop an integrated web environment with links 

to FSA and other partner sites 

 

Combase, www.combase.cc has become a predictive microbiology knowledge 

transfer hub with hundreds of world-wide hits every. Fig. 2, shows the available main 

submenu points: 

 

Browser – Where users can access more than 35 thousand datasets describing the 

microbial response to a specific environment; 

Submit data – Where procedures for data donations are explained (note that ca 20% 

of all data was received this way; 

ComBase Predictor  – This menu point will be replaced by the more general 

ComBase Modelling Toolbox, where users can access ComBase Predictor, as a 

generic package; Perfingens Predictor, as a (food-hazard) scenario-specific 

tool; DMFit as a modelling tool. The list should continue further in the future. 

Support – Various documents to help the user’s enquiry; 

Training – Where users can get information from training opportunities. (ca 30 

ComBase workshops were held worldwide, funded by the hosts; most of 

them overbooked). 

FAQ – Frequently Asked Questions (and answers) 

About – Basic information on Combase 

Links – Useful links to the members of the ComBase Partnership (FSA, among 

them) and twin organisations. 

 

 

The best demonstration of the power of the hub is trying it on the Internet.  

 

http://www.combase.cc/
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Fig. 2. Opening screen of www.combase.cc. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.combase.cc/
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Fig. 3. The new ComBase Modelling Toolbox will host many useful software tools, 

not only ComBase Predictor. 
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Section Four:  Objective 3.  Incorporate data from supporting partners into 

ComBase 

 

During the project, the amount of data stored in ComBase increased by more than 

50% and currently it has ca 37 thousand records, though from these only 35 thousand 

are available since the remaining were generated under dynamic conditions (mostly in 

fluctuating temperature) and the current browser is not able to accommodate that 

situation yet.   The majority of the records are full logcount curves.  From literature, 

we also put data in Combase when it represented only a growth or death rate as a 

response to the environment; these represent some 5,000 records.  

The most significant data donors were: 

 

Institution Contribution 

Dept. Food Micro.;  Univ. Cordoba, 

Spain 

Listeria in vegetables; ca. 500 rec. 

Dept of Ind. Microbiol., Univ. 

Complutense 

OD-derived rates of spoilage organisms; 

ca 1000 rec. 

Budapest University, Hungary. Listeria growth in presence of LAB;  

ca 50 rec. 

Dpt Nutr. y Brom. III. 

Univ.Complutense, Spain 

Pathogens, spoilage; mainly in MA; viable 

count curves and doubling times, by OD;  

ca 2000 rec. 

Danish Institute of Fisheries Research Spoilage organisms in broth and seafood;  

ca 200 rec. 

INRA, Avignon. France Growth and survival of various pathogens;  

ca 400 rec. 

Agricultural University of Athens. 

Greece 

Spoilage organisms, mainly in olives;  

ca 2000 rec. 

Technical University of Bratislava, 

Slovakia 

Pathogens and spoilage, in broth and milk     

ca 50 rec. 

Public Health Laboratory Services - 

UK 

Pathogens at low water activity;  

ca 100 rec. 

Metropolitan University. London UK  Spoilage organisms in broth and food;  

ca 500 rec. 

University of Reading. UK Pathogens in broth, inactivation and 

survival; ca 100 rec. 

Unilever Research Sharnbrook. UK Pathogens in food; ca 200 rec. 

Campden and Chorlywood FRA. UK Spoilage organisms; ca 500 rec. 

TNO, Holland Lactic acid bacteria in broth and food;  

ca 500 rec. 

Veterinary University of Viennna, 

Austria 

Spoilage organisms in broth and food;  

ca 200 rec. 

Instituto Zooprfilatico Sperimentale 

Brescia, Italy 

In cheese and salami;  ca 1500 rec. 

 

These partners have received the full dataset on a CD, accompanied by validation and 

modelling tools developed at IFR. 
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Also, if workshop participants requested the full database, they got the same CD.  

Those who got the full version, were asked to sign a document saying that the data 

will not be used for commercial purposes. 

 

Section Five: Objective 4.  Use all available data (FSA, ARS, EU, Literature), 

predictive models of growth and survival 

This was the main objective of the project. Originally it was planned by the USDA-

ARS-ERRC partner, that the product will be named as ComBase-PMP: Combined 

Database and Predictive Modelling Program.  The second part of the name was 

used to keep the PMP abbreviation that had gained an established image in the US.  

However, by July 2006, the predictive microbiology research group at the US partner 

has lost its key members and no replacement has been made.  The result is that their 

product the stand alone package PMP was not been developed further and the PMP 

has been loosing its reputation these days. This is why we agrees that we just keep the 

name Combase, even if it is actually not only a database. From the ComBase hub 

(www.combase.cc) there are two major links: the actual database, accessible by the 

Combase Browser (developed and hosted by the US partner), and the Modelling 

Toolbox (developed in this project at IFR) containing more and more (currently three) 

software to analyse the data. Until approval, the Modelling Toolbox can be tested at  

http://ifrsvwwwdev/maftest/ComBasePredictor/Login.aspx?ReturnUrl=%2fmaftest

%2fComBasePredictor%2fDefault.aspx  

 

A stand-alone integrated database + predictor was also developed and made 

available to data donors of the project. This can be found on the CD enclosed to this 

report (CBP.EXE). 

 

The ComBase database is now accessible via a new user interface of USDA-ARS 

ERRC.  Its main advantage is the more advanced query functionality (Fig 4.)  

 

Fig. 4 Search in the ComBase database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.combase.cc/
http://ifrsvwwwdev/maftest/ComBasePredictor/Login.aspx?ReturnUrl=%2fmaftest%2fComBasePredictor%2fDefault.aspx
http://ifrsvwwwdev/maftest/ComBasePredictor/Login.aspx?ReturnUrl=%2fmaftest%2fComBasePredictor%2fDefault.aspx
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When the users select the dataset they are interested in, they can see an overview of 

the selection, and they can browse them one by one as shown in Fig. 5. 

A major new feature here, that the measured curve can be analysed right on the spot. 

This was developed at IFR in this project and represents one of the most powerful and 

popular functionalities of ComBase. 

Namely, the displayed curve can be either fitted (Fig. 6) by the model of Baranyi and 

Roberts (which is the most commonly used primary model, also programmed in 

DMFit) or can be compared with the predicted curve (Fig. 7) generated by the 

ComBase Predictor. The difference between the observed and predicted curve gives a 

visualisation of the performance of the predicted models and increases the confidence 

it their use.  These features are increasingly used in higher education and training, 

mainly to demonstrate the meaning of ‘safe’ estimations (the predictions are based on 

pure culture measurements in broth with optimum media, therefore they are generally 

overestimate the observations in common food).  

 

Fig. 5  Displaying a specific record from ComBase. The query of the user (see Fig 4) 

resulted in 366 records, from which the plot shows the details of the 20th. The curve 

can be fitted and compared with predictions by using the circled links (see Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modelling Toolbox consists of: 

(i) ComBase Predictor representing generic (i.e. based on microbial curves in broth 

with optimal medium) growth, non-thermal survival and thermal inactivation models, 

applicable also under fluctuating temperature; 

(ii) A scenario-specific dynamic predictor, the Perfringens Predictor to model the 

growth of Clostridium perfringens during the cooling of beef.  

(iii) The web-version of DMFit, which fits sigmoid curves to "log cfu vs. time" 

bacterial growth data.  
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Fig. 6.  The record selected from the Combase database (Fig. 5) can be fitted right on 

the spot, by means of our new, web-based version of the DMFit curve fitting program.  

 
 

 

Fig. 7.  The record selected from the Combase database can be compared with 

predictions right on the spot. The predicted curves (with and without lag time) are 

based on the same model that are used in ComBase Predictor. 
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By ComBase Predictor, users can compare the growth / survival of four organisms, 

and/ or under four different combinations of the environmental factors, as shown in 

Figs 8 and 9: 

 

Fig. 8.  Growth of various organisms under the same conditions (temp 15°C,  pH 7) in 

three days. 
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Fig. 9.  Effect of temperature on the growth of non-proteolytic C. botulinum at pH 6, 

NaCl 1% . 
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Major progress have been made in the extension of the models. Now, ComBase 

Predictor can be used to estimate growth / inactivation curves under dynamically 

changing temperature, too, as shown in Fig 10. 

 

Fig. 10. S. aureus and  E. coli under fluctuating temperatures at pH 5.9, NaCl 1.5%. 
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Also, thermal inactivation and non-thermal survival curves can be generated 

according to new models created in the last year of the project (Fig. 11) 

 

 

 

Fig.11.  Thermal inactivation of B. cereus at temp 90°C,   pH 7,  NaCl 2.5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The models in ComBase Predictor are based on the data that are summarised in the 

tables 1-3.  Their mathematical background has been published and summarised in the 

project report of a previous FSA-funded project.  
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Table 1. Summary of raw datasets (observed “logcount v. time” curves) selected to 

develop growth models. Initial datasets: observed growth curves used to generate the 

growth models in the previous version of ComBase Predictor.  

  (3 factors*) (4th factor**) 

Growth 

Exten
ded  

 
 

No. of 
curves in the 

initial set 

No. of newly 
included 
curves  

No. of 
curves in the  

initial set 

No. of 
newly 

included 
curves 

Aeromonas hydrophila Yes 125 33 - - 

Bacillus cereus with CO2(%) Yes 86 109 58 - 

Bacillus licheniformis No 53 - - - 

Bacillus subtilis No 68 - - - 

Clostridium botulinum (non-prot.) No 52 - - - 

Clostridium botulinum (prot.) No 77 - - - 

Clostridium perfringens No 51 - - - 

Escherichia coli with CO2(%) Yes 80 89 78 - 

Listeria monocytogenes / innocua 
with CO2(%) 

Yes 251 279 75 9 

Listeria monocytogenes / innocua 
with nitrite(ppm) 

Yes 251 279 63 118 

Listeria monocytogenes / innocua 
with lactic(ppm) 

Yes 251 279 129 - 

Listeria monocytogenes / innocua 
with acetic(ppm) 

Yes 251 279 52 - 

Staphylococcus aureus No 93 - - - 

salmonellae with CO2(%) Yes 146 113 23 - 

salmonellae with nitrite(ppm) Yes 146 113 28 - 

Shigella flexneri with nitrite (ppm) Yes - 193 - 125 

Yersinia enterocolitica with 
CO2(%) 

Yes 282 35 31 - 

Yersinia enterocolitica with 
lactic(ppm) 

Yes 282 31 77 - 

Brochothrix thermosphacta No 44 - - - 

Pseudomonas spp Yes - 144 - - 

* 3 factors: temperature, pH and Aw 
** 4th factor: additional facor (either CO2 or lactic acid or acetic acid or nitrite) 

 



 22 

 
Table 2. Summary of raw datasets (observed “logcount v. time” curves) selected to 
develop thermal inactivation models. Initial datasets: observed growth curves used to 
generate the growth models in the previous version of ComBase Predictor.   

  (3 factors*) (4th factor**) 

Thermal inactivation 
Extended  

 
 

No. of 
curves in the 

initial set 

No. of newly 
included 
curves  

No. of 
curves in the  

initial set 

No. of 
newly 

included 
curves 

Bacillus cereus No 41 - - - 

Clostridium botulinum (non-
prot.) 

No 35 - - - 

Escherichia coli Yes 51 21 - - 

Listeria 
monocytogenes/innocua 

Yes 67 149 - - 

Salmonellae Yes 61 8 - - 

Yersinia enterocolitica Yes 82 4 - - 

Brochothrix thermosphacta Yes - 53 - - 

* 3 factors: temperature, pH and Aw 
** 4th factor: additional factor (either CO2 or lactic acid or acetic acid or nitrite) 

 
 
Table 3. Summary of raw datasets (observed “logcount v. time” curves) used to 
develop non-thermal survival models.  

NEW  
non-thermal survival models 

No. of observed survival 
curves selected 

Listeria 
monocytogenes/innocua 

194 

salmonellae 102 

* 3 factors: temperature, pH and Aw 
** 4th factor: additional factor (either CO2, lactic acid, acetic acid or nitrite) 
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As mentioned, other features of the ComBase Modelling Toolbox is the Perfringens 

Predictor, a result of another FSA-funded project, and the DMFit web edition (Fig. 

12), which is an extra plus, originally not in the objectives, but completed on users’ 

demand. Users can do predictive modelling tasks completely on the internet now, 

using freely available software packages. 

 

Fig. 12. DMFit web-edition. It fits complete sigmoid curves or their partial versions to 

data. 
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Section Six:  Dissemination  

All development are available on the Internet. Acknowledgement is shown by several 

publications referring to it (see the references), invited workshops (see below),  many 

invited conference talks (among them keynote lectures) and the fact that editors of the 

Journal of Food Protection, a leading, refereed food science publication, call authors 

of accepted publications to submit their data to Combase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Telling from the email addresses of those logging on ComBase, the distribution of 

users can be represented as below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This means that the majority of users come from industry. 

 

 

Quimper
London

Madrid
Bologna
Budapest

Valencia
Athens

Norwich

New Orleans

SloveniaDenver

Sydney
Melbourne

Hobart

Kuala Lumpur

Monterrey

Bangkok

Philadelphia

Bogotá

Queretaro

ComBase invited seminars and 

workshops, 2003 - 2006

"ComBase can be a watershed in the 

development of Predictive Microbiology 

and its applications.“

Tom McMeekin, Director of Australian 

Food Safety Centre of Excellence

BresciaPamplona

CreteWashington

Industry

Health and Research

Education

Government

Consultant

Unknown
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Section Seven:  Publications and presentations 

In addition to written and oral reports given to the Food Standards Agency, other 

publication and presentation activities are listed below 

 
Refereed papers, proceedings and book chapters 
Baranyi J. and Tamplin M. (2004). ComBase: A Common Database on Microbial Responses 

to Food Environments. J. Food Prot. 67, 1967–1971. 
Tamplin M., Baranyi J. and Paoli G. (2003).  Software programs to increase the utility of 

predictive microbiology information. In: Modelling Microbial responses in Foods. (Eds: 
R.C McKellar, X. Lu.)   CRC, Boca Raton, Fla.  

Baranyi, J. (2004). The ComBase Initiatve. In: Proceedings of the EU COST 920 Risk 
Assessment Symposium, Pamplona, SPAIN, 28-29 June, 2004. (Ed: Arie Havalar) 

Le Marc Y, Baranyi J, and Ross T (2005):  Mechanistic modelling of pathogen stress 
response. In: Understanding pathogen behaviour. (Ed: Mansell Griffiths). Woodhead 
Publishing, London. 

Baranyi J.  (2005). Quantitative microbial ecology of food. Evolution of mathematical 
modelling in food microbiology. Invited Editorial. Acta Alimentaria, 34, 335–337. 

Le Marc Y., Pin C. and Baranyi J. (2005):  Methods to determine the growth domain in a 
multidimensional environmental space. Int.J. Food Microbiol. 100., 3-12 

Le Marc Y, Huchet V, Beczner J, Thuault D, Mészáros L, Wilson D, Farkas J, Brocklehurst T 
and Baranyi J. (2005). Modelling the kinetics of Listeria innocua and Listeria 
monocytogenes in coculture with Lactococcus lactis. J.Appl. Microbiol. (submitted)  

Baranyi J.  (2006): Using the ComBase database and associated software tools to predict 
microbial responses to food environments. Food Manufacturing Efficiency, 1, 9-13. 

McMeekin J., Baranyi J., Zwietering M.,  Ross T.,  Dalgard P., Bowman J. and Kirk M. 
(2006). Information systems in food safety management. Int. J. Food Microbiol. 112, 
181–194 

 
Popular articles: 
Baranyi J., Tamplin M. and Peck M. (2003). ComBase: An international database of 

microbial responses to food environments. New Food 2003/1. Russel Publishing, UK. 
Baranyi J., Aldus C. and Dunford Z. (2003).  Virtual safety. Food Quality News, 17/06/2003. 
Baranyi J., Aldus C. and Dunford Z. (2003). Nove k dispozici ComBase - databaze modelu 

prediktivni mikrobiologie Agronavigator, 19/06/2003.   
Baranyi J., Aldus C. and Dunford Z. (2003).  Predictive microbiology database launched 

Institute of Food Technologists Daily News, 19/06/2003.   
Baranyi J., Aldus C. and Dunford Z. (2003).  Safety database. The Grocer, 21/06/2003. 
Peck M., Baranyi J. & Belsten J. (2003). Microbial database could cut costs. Food 

Manufacturer.  June/2003.  
Baranyi J., Aldus C. & Dunford Z. (2003). Combase. Food Engineering & Ingredients; 

1/8/2003  
Belsten J. and Baranyi J. (2003).  Data exchange for safer food. Food Technology 

International, 2004  
Baranyi J. and Roberts T.A. (2004): Predictive Microbiology - Quantitative Microbial 

Ecology. Culture, February, 2004. 
Baranyi J., Tamplin M. and Ross T. (2004). The ComBase Initiative.  Microbiology Australia 

25/3 2004/1. Australian Society for Microbiology. 
 
Invited workshops, seminars (organised and funded by hosts) 
Baranyi J. and Pin C. (2003). ComBase – a combined database on bacterial responses to 

food environments. Invited workshop associated with SAFEPORK: the 5th Conference 
on the safety of pork; Crete, Greece, 1 October, 2003. (Lead by J. Baranyi) 

Baranyi J. (2003). Computational tools for food microbiology. International course of the 
Master Programme “Food Safety of Animal Products" organised by University of 
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Bologna. (Invited lecture series). 
Baranyi J., Pin C., Métris (2004). ComBase – a combined database on bacterial responses 

to food environments. Invited workshop organised by the University of Malaya, 24 
February, 2004. (Lead by J. Baranyi) 

Baranyi J., Pin C., Métris A., Ross T., and Tamplin M. (2004). ComBase – a combined 
database on bacterial responses to food environments. Invited workshops in Melbourne 
and Sydney, organised by the Food Safety Centre of Excellence Australia, 27 February – 
3 March, 2004. (Lead by J. Baranyi) 

Baranyi, J. (2004). Predictive Microbiology Tools and ComBase. Workshop on the Annual 
Meeting of the American Society for Microbiology, New Orleans, 23-26 May. 

Baranyi J. and Tamplin M. (2004).  ComBase – a combined database on bacterial 
responses to food environments for Microbiological Risk Assessment. Washington DC, 
27 August (Invited workshop for FDA and FSIS professionals of USDA, led by J. 
Baranyi). 

Baranyi J. (2004). ComBase – a combined database on bacterial responses to food 
environments. Invited workshop associated with FoodMicro 2004, Portoroz, Slovenia, 15 
September, 2004. 

Baranyi J. (2004).  ComBase – a combined database on bacterial responses to food 
environments. Workshop for Food Safety Professionals. Food Standards Agency, 
London, 4 November, 2004. 

Baranyi, J. (2004). ComBase – a combined database on bacterial responses to food 
environments.  EU COST 920 Risk Assessment Symposium, Pamplona, SPAIN, 28-29 
June, 2004. 

Baranyi J. (2005).  ComBase – a combined database on bacterial responses to food 
environments. Workshop on the annual meeting of the Society for Applied Microbiology.  
12-13 January, 2005. Norwich, UK. 

Baranyi J. (2005).  ComBase – a combined database on bacterial responses to food 
environments. Invited workshop on the invitation of the University of Monterrey. April 
2005, Monterrey, Mexico. 

Baranyi J. and Le Marc Y. (2005). Using the ComBase database and related predictive 
microbiology software tools.  Istituto Zooprofilattico Sperimentale, Brescia, October, 2005 

Baranyi J. (2006).  ComBase – a combined database on bacterial responses to food 
environments. Workshop and seminars on the invitation of the University of Queretaro. 
October 2006, Queretaro, Mexico. The same time: Invited talk on University Science 
Days. 

Baranyi J. (2006).  ComBase – a combined database on bacterial responses to food 
environments. Workshop and seminars on the invitation of the University of La Sabana, 
Bogotá, Colombia. October 2006. The same time: Invited talk to undergraduates. 

Baranyi J. (2006).  Modelling Microbial Interactions. Seminar at University of Colorado State. 
November 2006.  

Baranyi J. (2006).  ComBase – a combined database on bacterial responses to food 
environments. Workshop and seminars on the invitation of the University of North 
London. May 2007.  
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Section Eight:  Deliverables achieved 

All the project deliverables have been achieved as shown below. 

 

D1 Growth Predictor version 2 will have been 
improved and supplied with user-friendly help 
file and manual; also accompanied by 
continuous technical support. 

31.12.2003     
 

31.12.2003     
 

Yes 

D2 Create the ComBase web-site at IFR and link 
it with relevant pages of FSA and other 
partners. 

30.09.2004     30.09.2004     Yes 

D3 Include all available data from European 
partners in ComBase. 

31.03.2005     31.03.2005     Yes 

D4 Using all available data (FSA, ARS, EU, 
literature), develop basic predictive models 
of growth and survival. 

31.12.2005     31.12.2005     Yes 

D5 Using all the available data, develop 
advanced predictive models, with 
uncertainty measures and options of dynamic 
environment, of growth and survival; thereby 
upgrading all the predictive models in 
ComBase. 

31.03.2006     31.03.2006     Yes 

D6 Supply both the desktop and the internet 
version of the database with the new models, 
creating ComBase-PMP: Combined 
Database and Predictive Modelling Program. 

31.03.2006     31.03.2006     Yes; the 
name is 
different 

D7 Dissemination activities, papers, leaflets, 
workshops. 

30.06.2006     30.06.2006     Yes 

 

 

 

Conclusions  

According to Prof Tom McMeekin, Director of Australian Food Safety Centre of 

Excellence, “…properly supported… ComBase can be a watershed in the 

development of Predictive Microbiology and its applications.”  (McMeekin, 

T.A.(2003). An Essay on the Unrealized Potential of Predictive Microbiology. In: 

McKellar, R.C. and Lu, X (eds): Modelling Microbial responses in Foods. CRC, Boca 

Raton, Fla., USA, pp 231-235). This project was a demonstration what direction it 

needs to go to successfully reach its potentials.  
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Appendix A.  Modelling background  
 

A1. Introduction 
Since the early 1980s, with the advent of powerful PCs, food safety research has increasingly 
turned to quantitative, computational tools. The development of databases, hand in hand with 
mathematical and statistical processing, has become a key element in food safety. This was 
recognised by the UK Ministry of Agriculture Fisheries and Food, who launched their 
Predictive Microbiology Programme at the end of the 1980s. Work funded under this 
Programme produced a large amount of growth and survival data for various food-borne 
organisms and formed the underlying database for the Food MicroModel software, which 
predicted the growth and survival of various (mainly pathogenic) micro-organisms in food. 

These data now constitute the core of the database behind ComBase Predictor. 

 

A2. Data 
Predictive modelling, for microbiological purposes, and therefore ComBase Predictor, is 

based on the recognition that, although food microbiology experiments may have been 
carried out for different purposes, such as challenge tests for new product development, or 
establishing the properties of an emerging pathogen, the results can always be put into the 
broad framework of “Microbial response to a specific environment around the cells”. 
Mathematically, this is a mapping between two spaces. Both can be characterised by one or 
more (possibly dynamic, i.e. time-dependent) factors depending on how detailed the 
description is intended to be. 

Predictive models for ComBase Predictor are based only on output from laboratory 

experiments observed in culture media under well-controlled laboratory conditions. Data were 
not all considered with equal weight, since the aim was not to model the average outcome of 
those measurements, but to produce safe (conservative) predictions. Additionally, many data 
were obvious outliers, identified by mathematical / statistical means. However, these data 
were retained in the database (though not used in the creation of the models), since they can 
be useful to estimate the variability of microbial responses when experiments are repeated. 
These are the main reasons for observed growth curves being generally below predicted 
curves. 
The raw data are stored in a Microsoft Access database, in a structure that was developed at 
IFR. 
 

A3. Mathematical modelling 
The need to predict bacterial kinetics in food generated a discipline that is called Predictive 
Microbiology in the scientific literature. It focuses on the mathematical description of the 
microbial responses to the environment in food. A comprehensive review of the subject can 
be found in Ross et al. (1999), which also serves as a basis for this summary. 
Predictive microbiology is based on the hypothesis that growth is an intrinsic characteristic of 
the organism and will occur reproducibly in the same environment. Variation of cell 
concentration is described by a mathematical (growth or survival) curve and this is called a 
primary model. Secondary models describe how the parameters of primary models depend 
on environmental factors such as temperature, pH and water activity. These are described by 
mathematical functions and, by interpolation, the cell concentration against time can be 
predicted for any combination of conditions. 
 
A3.1 Primary models 
 
A3.1.1 A primary model for growth and thermal inactivation 
Unlike the superseded Food MicroModel, which predominantly used the 

Gompertz sigmoid function for its primary growth model, ComBase Predictor 
uses the model of Baranyi and Roberts (1994). The main differences between 
the two approaches are explained below. 
A sigmoid primary model is commonly described by four parameters: 
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(1)  y0  the natural logarithm of the initial cell concentration. 
This is an initial value that is specific to the history of the organism and not 
related to the current growth environment. 
 
(2)  λ  the time in lag phase (or shoulder). 
 
The length of the lag phase will depend on the intrinsic characteristics of the bacteria, the 
current environmental conditions and the history (initial physiological state) of the cells. Cells 
that have come from a different environment or are damaged (for example after heat 
treatment or freezing) may require more time to synthesise macromolecules and repair 
damage before they can divide than undamaged cells from a similar environment. 
 
(3)  μmax  the maximum specific growth rate (or death rate). 
 
This represents the steepest slope of the curve cell concentration (natural logarithm) v. time. 
It is considered to be an intrinsic characteristic of the organism dependant on the current 
environment but is not affected by the cell history. Note that the specific growth rate means 
the increase in natural logarithm per unit time, whilst the curves are shown with a logarithm to 
the base 10 of the cell concentration. Thus the real specific growth rate is, in fact, about 2.3-
times higher than the growth rate seen on the plot. 
The doubling time (required for the population to double in the exponential phase) is 
calculated as: 
 
doubling time= ln(2)/specific growth rate. 
 
The D-value (the time required for a 1-log reduction of the bacterial population in the death 
phase) is obtained as: 
 
D-value= -ln(10)/specific death rate. 
 
Note that all time values are in hours in the software. 
 
(4)  ymax the natural logarithm of the maximum cell concentration (or ymin, the logarithm of 
the concentration of the resistant population in the case of a death curve) 
 
The maximum concentration is less extensively studied in predictive microbiology than the 
other growth parameters because food safety risk and spoilage generally appears at much 
lower concentrations; therefore, it is modelled only by an average value. In the case of 
thermal death models, ymin is not modelled but considered to be ymin= -∞. 
 
Using the above terminology: 
 
1. The Gompertz function overestimates the maximum specific growth rate by 
10-15%. 
 
2. The maximum specific growth rate was the main model parameter for Food 

MicroModel and is the main model parameter for ComBase Predictor. However, in 

ComBase Predictor, the other one is not the lag but rather the “initial physiological state”, 

0 (see Baranyi and Roberts, 1994). It is a dimensionless number between 0 and 1;if 0 =0, 

then there is no growth, and the lag time is infinite; if 0=1, there is no lag, and growth will 
commence immediately. It has the same role as the inoculum size: an initial parameter, 
quantifying the history of the cells (this parameter can be set up by the user). 
From that, the lag is a consequence, as the following formula shows: 

 

= -ln(0)/max 

 
Because the user is rarely able to provide its value, a typical value is used as the default. 

Namely, if the chosen growth curves are fitted with the primary model, then the 0 values 
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obtained are modelled as function of the environmental factors (temperature, pH, water 
activity, possibly a fourth factor). This “secondary” model is simply a constant, taking the 

geometrical average of the h0 = -ln(0) values. 
 
A3.1.2 Primary models for non-thermal inactivation 
The model of Baranyi and Roberts (1994) has also been used to describe inactivation curves 
with sigmoid shapes (or without shoulder or tail). The model of Baranyi and Roberts is 
inappropriate to describe some inactivation curves which do not exhibit this sigmoid shape. 
For example, for some curves, the death phase has a concave shape, due to the presence of 
a resistant population. Concave curves or concave curves followed by tailing were modelled 
with respectively biphasic (see figure below) or tri-phasic models. In order not to 
underestimate microbiological risks, only the death rate of the resistant population was 
considered in the secondary modelling. 
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A3.2 Secondary models 
When creating the secondary models, the logarithms of the specific growth rates (or death 
rates) were described as a function of the (possibly rescaled) environmental factors by a 
standard quadratic multivariate polynomial. The %NaCl values were first transformed into 
water activity values by the formula: 
 
Aw=1-NaCl*(5.2471+0.12206*NaCl)/1000 
 
(Resnik and Chirife, 1988). For the growth and the non-thermal death models, the water 
activity values were rescaled as in Gibson et al. (1994) to obtain: 
bw =sqrt(1-Aw ). 
 

For the models of ComBase Predictor, a standard second order polynomial modelled the 

effect of temperature, pH, and Aw (or bw) values on the logarithm of the growth or death rate. 
This model was fitted for the rates produced by the primary models for each organism. They 
represent the basic models, which produce the “worst case” predictions, since further “fourth 
factors”, such as CO2 or nitrite content, only decrease these growth rates. (Note that other 
subsidiary conditions are also recorded in the database, but not taken into account for the 
predictions). 
Currently only one “fourth factor” can be taken into account in any particular model. If the 
value of the fourth factor is 0, then the prediction produced by the basic three-factor model is 
obtained. This feature is currently lacking in any other predictive microbiology programme. 
 

Death rate of the 
resistant 
population 
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A4. Model performance 
Although modelling lag time would be preferable, to date, validated predictive models have 
been developed on growth rates. This is because the lag phase is technically difficult to study, 
so quantitative data is lacking, and lag is more difficult to model as it depends not only on the 
current conditions but also on the history (or initial physiological state) of the cells. 
 
To demonstrate the goodness of fit of the models, observed rates were plotted against 

predicted, for each model, in log-scale (see Appendix C). The deviation of the points from the 

45 equality line demonstrates the accuracy of the models.  As a rule of thumb, the current 
performance of three-factor (core) predictive models is about 30-35 %, which means that the 
average error of prediction for the exponential growth / death rates is about this fraction of the 
respective predicted value.  
One basic principle of empirical modelling is that one should not extrapolate, i.e. predictions 
should not be made outside the region of observations. 
 
The limits of the growth and thermal death models for each environmental factor for each 
organism are given in the Table A1-A3 below: 
 
Table A1. The limits of each environmental factor in each growth model. The primary 
variables are temperature, pH and water activity (Aw); the fourth factor (ef4) can be either 
CO2 , nitrite, or organic acids, but not a combination of more of them. 

Model Tempmin Tempmax pHmin pHmax Awmin ef4max 

Aeromonas hydrophila 2 37 4.6 7.5 0.974 0 

Bacillus cereus with CO2(%) 5 34 4.9 7.4 0.94 60 

Bacillus licheniformis 13 34 4 7.6 0.907 0 

Bacillus subtilis 10 34 4.3 7.8 0.933 0 

Clostridium botulinum (non-prot.) 4 30 5.1 7.5 0.974 0 

Clostridium botulinum (prot.) 14 40 4.7 7.2 0.954 0 

Clostridium perfringens 15 52 5 8 0.971 0 

Escherichia coli with CO2(%) 10 42 4.5 7.5 0.961 100 

Listeria monocytogenes/innocua 
with CO2(%) 

1 40 4.3 7.5 0.924 100 

Listeria monocytogenes/innocua 
with nitrite(ppm) 

1 40 4.4 7.5 0.924 200 

Listeria monocytogenes/innocua 
with lactic(ppm) 

1 40 4.4 7.5 0.924 20000 

Listeria monocytogenes/innocua 
with acetic(ppm) 

1 40 4.4 7.5 0.924 10000 

Staphylococcus aureus 7.5 30 4.3 7.1 0.907 0 

salmonellae with CO2(%) 7 40 3.9 7.4 0.973 100 

salmonellae with nitrite(ppm) 7 40 3.9 7.4 0.973 200 
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Shigella flexneri with nitrite (ppm) 15 37 5.5 7.5 0.971 1000 

Yersinia enterocolitica with CO2(%) -1 37 4.4 7.2 0.957 80 

Yersinia enterocolitica with 
lactic(ppm) 

-1 37 4.4 7.2 0.957 10000 

Brochothrix thermosphacta 0 30 5.5 7 0.95 0 

Pseudomonas spp 0 20 5 7.4 0.961 0 

Notes:  For each organism and model the upper limit of Aw = 1. 
The fourth environmental factor is denoted by ef4, for which the minimum is always 0. 

 
 

Table A2. The limits of each environmental factor in each thermal inactivation model. 
The primary variables are temperature, pH and water activity (Aw). 

Model Tempmin Tempmax pHmin pHmax Awmin Awmax 

Bacillus cereus 90 100 4.5 7 0.954 0.986 

Clostridium botulinum (non-prot.) 80 95 4.1 7.3 0.971 1 

Escherichia coli 54.5 64.5 4.2 8 0.947 1 

Listeria monocytogenes/innocua 60 68 4.2 7 0.943 1 

Salmonellae 54.5 65 4 7.1 0.997 1 

Yersinia enterocolitica 52 60 4.2 7 0.961 1 

Brochothrix thermosphacta 40 55 5 7 0.989 1 

 
 
Table A3. The limits of each environmental factor in each non-thermal survival model. The 
primary variables are temperature, pH and water activity (Aw); the fourth factor (ef4) can be 
either CO2, nitrite, or organic acids, but not a combination of them. 

Model Tempmin Tempmax pHmin pHmax Awmin 

Listeria monocytogenes/innocua  0 20 3.5 7 0.793 

Salmonellae 0 40 4.3 7.5 0.781 

Note: For each organism and model the upper limit of Aw = 1 
 
 
 
Note that it is possible that at certain conditions (for example high salt), both growth and 
survival predictions can be generated.  The reason for this is that the interpolation region is 
not well definable in multi-dimension. The most advanced methods to overcome this difficulty 
is that of Le Marc et al (2005) but the implementation of that method in ComBase Predictor 
would require much more effort than what was the scope of this project. In a possible 
continuation of the project, the solution of this problem should be one of the main priorities. As 
a temporary measure, when the conditions of temperature, pH and water activity are also 
included in a growth model, a error message appears and the user is invited to continue with 
“Growth model”. 
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Appendix B. Source of data to generate models 
 

B1 Growth models 
Aeromonas hydrophila (3 factors) 
 
Core model (temperature, pH, Aw): 125 rates from the Food Micro Model data set, 31 rates 
from Palumbo et al. (1991), 2 rates from Golden et al. (1989) 
 
References 
 
Palumbo S. A., Willimas A.C., Buchanan R.L. and Phillips J.G. 1991: Model for the aerobic 
growth of Aeromonas hydrophila K144. J. Food Prot. 54, 429-435. 
 
Golden D.A., Eyles M. J., and Beuchat L. R. 1989: Influence of modified atmosphere storage 
on the growth of uninjured and heat injured Aeromonas hydrophila. Appl. Environ. Microbiol.  
55(11), 3012-3015. 

 

Bacillus cereus with CO2(%) 
 
Core model (temperature, pH, Aw): 86 rates from the Food Micro Model data set, 76 rates 
from the Institute of Food Research (Norwich, UK),  33 rates from London Metropolitain 
University.  
 
CO2 data: 58 rates from the Food Micro Model data set. 

 

Bacillus licheniformis (3 factors) 
 
Core model (temperature, pH, Aw): 58 rates from the Food Micro Model data set. 

 

Bacillus subtilis (3 factors) 
 
Core model (temperature, pH, Aw): 68 rates from the Food Micro Model data set. 

 

Clostridium botulinum (non-prot.) (3 factors) 
 
Core model (temperature, pH, Aw):52 rates from the Food Micro Model data set. 

 
 

Clostridium botulinum (prot.) (3 factors) 
 
Core model (temperature, pH, Aw): 77 rates from the Food Micro Model data set. 

 

Clostridium perfringens (3 factors) 
 
Core model (temperature, pH, Aw): 51 rates from the Food Micro Model data set. 

 

Escherichia coli with CO2(%) 
 
Core model (temperature, pH, Aw): 80 rates from the Food Micro Model data set, 72 data 
from Buchanan et al. (1992) and  17 data from Glass et al. (1992). 
 
CO2 data: 78 rates from the Food Micro Model data set. 
 
References 
 
Buchanan R.L., Klawitter, L. A. 1992. The effect of incubation temperature, initial pH and 
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sodium chloride on the growth kinetics of Escherichia coli O157:H7. Food Microbiol.   9: 185 - 
196 
 
Glass K. A., Loeffelholz J. M., Ford J. P., and. Doyle M. P. 1992. Fate of Escherichia coli 
O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Appl. Environ. 
Microbiol.   58(8), 2513 - 2516 

 

Listeria monocytogenes/innocua with CO2(%) 
 
Core model (temperature, pH, Aw): 251 rates from the Food Micro Model data set, 206 data 
from Buchanan and Phillips (1990), 25 data from Duh et al. (1993), 43 data from Le Marc 
(2001). 
 
CO2 data: 75 rates from the Food Micro Model data set, 9 data from the Institute of Food 
Research, Norwich. 
 
References 
 
Buchanan R. L. and Phillips J. G. 1990. Response surface model for predicting the effects of 
temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on 
the growth of Listeria monocytogenes. J. Food Protect. 53, 370-376. 
 
Duh Y. H. and Schaffner D. W. 1993. Modelling the effect of temperature on the growth rate 
and lag time of Listeria innocua and Listeria monocytogenes. J. Food Protect.  56, 205-210. 
 
Le Marc Y. Développement d'un modèle modulaire décrivant l'effet des interactions entre les 
facteurs environnementaux sur les aptitudes de croissance de Listeria. Thèse de doctorat. 
Université de Bretagne Occidentale, France. 

 
 
 

Listeria monocytogenes/innocua with nitrite(ppm) 
 
Data (temperature, pH, Aw): 251 rates from the Food Micro Model data set, 206 data from 
Buchanan and Phillips (1990), 25 data from Duh et al. (1993), 43 data from Le Marc (2001). 
 
Nitrite data: 75 rates from the Food Micro Model data set, 118 data from Buchanan and 
Phillips (1990). 
 
References 
 
Buchanan  R. L. and Phillips J. G. 1990. Response surface model for predicting the effects of 
temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on 
the growth of Listeria monocytogenes. J. Food Protect. 53, 370-376. 
 
Duh Y. H. and Schaffner D. W. 1993. Modelling the effect of temperature on the growth rate 
and lag time of Listeria innocua and Listeria monocytogenes. J. Food Protect.  56, 205-210. 
 
Le Marc Y. Développement d'un modèle modulaire décrivant l'effet des interactions entre les 
facteurs environnementaux sur les aptitudes de croissance de Listeria. Thèse de doctorat. 
Université de Bretagne Occidentale, France. 

 

Listeria monocytogenes/innocua with lactic(ppm) 
 
Data (temperature, pH, Aw): 251 rates from the Food Micro Model data set, 206 data from 
Buchanan and Phillips (1990), 25 data from Duh et al. (1993), 43 data from Le Marc (2001). 
 
Lactic acid data: 129 rates from the Food Micro Model data set. 
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Listeria monocytogenes/innocua with acetic(ppm) 
 
Data (temperature, pH, Aw): 251 rates from the Food Micro Model data set, 206 data from 
Buchanan and Phillips (1990), 25 data from Duh et al. (1993), 43 data from Le Marc (2001). 
 
Acetic acid data: 52 rates from the Food Micro Model data set. 
 
References 
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Staphylococcus aureus (3 factors) 
 
Core model (temperature, pH, Aw): 93 rates from the Food Micro Model data set. 

 

salmonellae with CO2(%) 
 
Core model (temperature, pH, Aw): 146 rates from the Food Micro Model data set, 9 data 
from Bovill et al. (2000) and 104 data from Oscar (1999).  
 
CO2 data: 75 rates from the Food Micro Model data set. 
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Oscar T.P.1999. Response surface models for effects of temperature, pH, and previous 
growth pH on growth kinetics of Salmonella typhimurium in brain heart infusion broth. J. Food 
Protect. 62,106-111. 

 
 
 
 

salmonellae with nitrite(ppm) 
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Core model (temperature, pH, Aw): 146 rates from the Food Micro Model data set, 9 data 
from Bovill et al. (2000) and 104 data from Oscar (1999).  
 
Nitrite data: 28 rates from the Food Micro Model data set. 
 
References 
 
Bovill R., Bew J., Cook N., D'Agostino M., Wilkinson N. and Baranyi J. 2000: Predictions of 
growth for Listeria monocytogenes and Salmonella during fluctuating temperature. Int. J. 
Food Microbiol. 59, 157-165. 
 
Oscar T.P.1999: Response surface models for effects of temperature, pH, and previous 
growth pH on growth kinetics of Salmonella typhimurium in brain heart infusion broth. J. Food 
Protect. 62, 106-111. 

 

Shigella flexneri with nitrite(ppm) 
 
Core model (temperature, pH, Aw): 193 data from Zaika et al. (1992). 
 
Nitrite data: 125 rates from Zaika et al. (1992). 
 
Reference 
 
Zaika  L. L., Phillips J. G. and Buchanan R.L. 1992. Model for aerobic growth of Shigella 
flexneri under various conditions of temperature, pH, sodium chloride and sodium nitrite 
concentrations. J. Food Protect. 55, 509-513. 

 

Yersinia enterocolitica with CO2(%) 
 
Core model (temperature, pH, Aw): 282 rates from the Food Micro Model data set, 12 rates 
from Alber et al. (1992) and 23 data from Badhuri et al. (1995). 
 
CO2 data: 31 rates from the Food Micro Model data set. 
 
References 
 
Alber  S. A. and Schaffner D. W. 1992. Evaluation of data transformations used with the 
square root and Schoolfield models for predicting bacterial growth rate. Appl. Environ. 
Microbiol. 58, 3337-3342. 
 
Bhaduri  S., Buchanan R. L. and Phillips J. G.1995. Expanded response surface model for 
predicting the effects of temperatures, pH, sodium chloride contents and sodium nitrite 
concentrations on the growth rate of Yersinia enterocolitica. J. Appl. Bacteriol. 79,163-170. 

 
 

Yersinia enterocolitica with lactic(ppm) 
 
Core model (temperature, pH, Aw): 282 rates from the Food Micro Model data set, 12 rates 
from Alber and Schaffner (1992) and 23 data from Badhuri et al. (1995). 
 
Lactic acid data: 77 rates from the Food Micro Model data set. 
 
References 
 
Alber S. A and Schaffner D. W. 1992: Evaluation of data transformations used with the square 
root and Schoolfield models for predicting bacterial growth rate. Appl. Environ. Microbiol. 58, 
3337-3342. 
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Bhaduri, S., Buchanan, R. L. and Philips J. G.1995. Expanded response surface model for 
predicting the effects of temperatures, pH, sodium chloride contents and sodium nitrite 
concentrations on the growth rate of Yersinia enterocolitica. J. Appl. Bacteriol. 79,163-170. 

 

Pseudomonas spp. (3 factors) 
 
Data (temperature, pH, Aw): 12 rates from Pin et al. (1998), 70 rates from Campden and 
Chorlwywood Research Association, Chipping Campden and 62 rates from London 
Metropolitan University. 
 
Reference 
Pin C. and Baranyi J. 1998. Predictive models as means to quantify the interactions of 
spoilage organisms. Int.J. Food Microbiol. 41. 59-72. 

 

Brochothrix thermosphacta (3 factors) 
 
Core model (temperature, pH, Aw): 44 rates from the Food Micro Model data set. 

 
 

B2. Thermal inactivation models 
Bacillus cereus (3 factors) 
 
Core model (temperature, pH, Aw): 41 death rates from the Food Micro Model data set. 

 

Clostridium botulinum (non-prot.) (3 factors) 
 
Core model (temperature, pH, Aw): 35death rates from the Food Micro Model data set. 

 
 

Escherichia coli (3 factors) 
 
Core model (temperature, pH, Aw): 51 rates from the Food Micro Model data set, 21 data 
from Unilever Research. 

 

Listeria monocytogenes (3 factors) 
 
Core model (temperature, pH, Aw): 67 rates from the Food Micro Model data set, 13 data 
from Unilever Research; 136 data from Linton et al. (1995). 
 
Reference 
 
Linton, R.H., Carter W.H., Pierson M.D, Hackney C.R. and Eifert J.D. 1995. Use of a modified 
gompertz equation to predict the effects of temperature, pH, and NaCl on the inactivation of 
Listeria monocytogenes Scott A heated in infant formula. J. Food Protect. 59, 16-23 

 

Salmonellae (3 factors) 
 
Core model (temperature, pH, Aw): 61 rates from the Food Micro Model data set, 8 data from 
ARS-Eastern Regional Research Center, Philadelphia, USA. 

 

Yersinia enterocolitica (3 factors) 
 
Core model (temperature, pH, Aw): 86 death rates from the Food Micro Model data set. 

 

Brochothrix thermosphacta (3 factors) 
 

Core model (temperature, pH, Aw): 53 death rates from Baranyi et al. (1996). 
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References 
 
Baranyi J., Jones A., Walker C., Kaloti A. and Mackey B.M. 1996. A combined model for 
growth and thermal inactivation of Brochothrix thermosphacta. J. Appl. Env. Microbiol. 62. 
1029-1035. 

 

B3. Non thermal survival models 
Listeria monocytogenes (3 factors) 
 
Data (temperature, pH, Aw): 194 inactivation rates from the Food Micro Model data set. 
 

 

Salmonellae (3 factors) 
 
Data (temperature, pH, Aw): 102 inactivation rates from the Food Micro Model data set. 
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Appendix C. Goodness of fit of generated models 
 

C1. Growth models 
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C. botulinum (non-prot) (3 factors)

0.001

0.01

0.1

1

0.001 0.01 0.1 1

Predicted rates

O
b

s
e
rv

e
d

 r
a
te

s

3-factor rates (52 points)
  

C. botulinum (prot) (3 factors)

0.001

0.01

0.1

1

0.001 0.01 0.1 1

Predicted rates

O
b

s
e
rv

e
d

 r
a
te

s

3-factor rates (77 points)
 

 



 41 

 
 

C. prefringens (3 factors)
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S. aureus (3 factors)

0.001

0.01

0.1

1

0.001 0.01 0.1 1

Predicted rates

O
b

s
e
rv

e
d

 r
a
te

s

3-factor rates (93 points)
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Y. enterocolitica with CO2
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B. thermosphacta (3 factors)
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C2. Thermal inactivation models 
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E. coli  (3 factors)
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Y. enterocolitica (3 factors)
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C3. Non-thermal survival models 
 

L. monocytogenes (3 factors)
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Appendix D. List of files on the enclosed CD 

 

 
1. This report       CBPtechRep.pdf 
2. User manual for ComBase Predictor web version CBPuserMan.pdf 
3. ComBase Predictor stand-alone version   folder CBP 

(This needs to be copied in a working directory on the hard disk) 
 

 


